<table>
<thead>
<tr>
<th>FEMA No.</th>
<th>FEMA Primary Name</th>
<th>The Identification Description as Reviewed by the FEMA Expert Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>4895</td>
<td>Rebaudioside M</td>
<td>Rebaudioside M ≥80%; Rebaudioside D 5-20%; Total steviol glycosides ≥95%.</td>
</tr>
<tr>
<td>4907</td>
<td>Corynebacterium glutamicum corn syrup fermentation product</td>
<td>Glutamic acid 35-40%; Other amino acids 1-2%; Total nitrogen 6-7%; Aliphatic primary alcohols, aldehydes, carboxylic acids, acetals and esters containing additional oxygenated functional groups 1-2%; Minerals 9-11%</td>
</tr>
<tr>
<td>4908</td>
<td>Corynebacterium stationis corn syrup fermentation product</td>
<td>Inosine 5’-monophosphate 20-25%; Amino acids 7-8%; Minerals 23-25%; Water 28-37%; Other nucleotides 1-2%; Total nitrogen 5-8%</td>
</tr>
<tr>
<td>4909</td>
<td>Glucosylated steviol glycosides, 70-80%</td>
<td>Supraglucosylated steviol glycosides 70-80%; Rebaudioside A 14-20%; Steviol glycosides not further glucosylated, each individually, not to exceed 3%; Maltodextrin 3-10%</td>
</tr>
<tr>
<td>4910</td>
<td>Glucosylated steviol glycosides, 40%</td>
<td>Supraglucosylated steviol glycosides 30-40%; Rebaudioside A 5-8%; Not more than 4% stevioside; All other individual steviol glycosides not further glucosylated <3%; Maltodextrin 45-60%</td>
</tr>
<tr>
<td>4911</td>
<td>Stevia extract stevioside, 70%</td>
<td>Stevioside 70-80%; Rebaudioside A 13-18%; Steviolbioside 1-3%; Rebaudioside C 2-3%; Total glycosides (including Rebaudioside D, Rebaudioside B, Rebaudioside F, Dulcoside A, and Rubusoside) <3%</td>
</tr>
<tr>
<td>4912</td>
<td>Hibiscus blossom extract</td>
<td>Derived from hibiscus blossom calyces (Hibiscus sabdariffa L.), Hibiscus blossom extract is measured as water 30-60%; ethanol 0-11%; ash content 5-10%; hibiscus acid 12-18%; hydroxycitric acid 2-7%; fructose and glucose 3-5%; phenols 1-3.5%; anthocyanins 0.3-0.6%; volatiles <0.1%</td>
</tr>
<tr>
<td>4919</td>
<td>Refined soybean oil extract</td>
<td>Derived from refined soybean oil, refined soybean oil extract is measured as beta-Sitosterol 43-45%; Stigmasterol 27-30%; Campesterol 25-27%; Brassicasterol, trace amounts; Not to exceed Good Manufacturing Practices levels of 50 ppb 3-monochloropropylene (3-MCP) and glycidyl esters</td>
</tr>
<tr>
<td>4921</td>
<td>Rebaudioside D 95%</td>
<td>Rebaudioside D ≥95%; Total other steviol glycosides <3.5%</td>
</tr>
<tr>
<td>4922</td>
<td>Rebaudioside M 95%</td>
<td>Rebaudioside M ≥95%; Rebaudioside B <2%; Rebaudioside A <1.5%; Total other steviol glycosides <1.5%</td>
</tr>
<tr>
<td>4931</td>
<td>Glucosylated steviol glycosides, 90%</td>
<td>Not less than 90% of total steviol glycosides inclusive of supraglucosylated steviol glycosides; Rebaudioside A less than 3%; Stevioside less than 2%; other steviol glycosides not further glucosylated, each individually, less than 2%; Maltodextrin less than 10%</td>
</tr>
<tr>
<td>4932</td>
<td>Chaenomeles speciosa leaf extract</td>
<td>Derived from the leaves of Chaenomeles speciosa, Chaenomeles speciosa leaf extract is measured as not less than 2% polyphenols and ≥95% non-volatile components, including carbohydrate, fat, protein and water</td>
</tr>
</tbody>
</table>

1 The identity descriptions for FEMA 4923-4925 are included in Cohen et al. (2020).
4933	*Eriobotrya japonica* leaves extract	Derived from the leaves of *Eriobotrya japonica*, *Eriobotrya japonica* leaves extract is measured as not less than 2% citric acid; Not less than 2.5% triterpene acids; Not less than 93% non-volatile components including carbohydrates, fat, protein, water.
4936	Rebaudioside E ≥85%	Rebaudioside E 85-92%; Rebaudioside D 5-10%; Steviobioside and stevioside, each individually, less than 1%
4937	Rebaudioside I 95%	Not less than 95% Rebaudioside I; Rebaudioside B less than 1%
4940	beta-Bisabolene ≥88%	Not less than 88% beta-bisabolene with no less than 7% aliphatic and aromatic hydrocarbons, typically identified as beta-sesquiphellandrene and gamma-bisabolene.
4941	Nootkatone complex	Not less than 60% nootkatone; total mono-, di- and trioxygenated sesquiterpenes up to 95%.
4942	Modified guaiac wood extract	Derived from guaiac wood oil (*Guaiacum* spp.), Modified guaiac wood extract includes not less than 1.25% (3S,5R,8S)-3,8-dimethyl-5-prop-1-en-2-yl-3,4,5,6,7,8-hexahydro-2H-azulen-1-one; sesquiterpenes 9-25%; monooxygenated norsesquiterpenes and sesquiterpenes 25-40%; di- and trioxygenated sesquiterpenes 6-15%; triethyl citrate 35-50%.
Supplementary Information. Key Findings of the FEMA Expert Panel Safety Evaluations for GRAS 29

Since its initial publication of GRAS determinations for flavor ingredients (Hall and Oser, 1965), the FEMA Expert Panel has made available information on its determinations, including conditions of intended use for individual flavor ingredients, and the scientific basis and information supporting these determinations. Included herein are the key findings for each of the new GRAS determinations included within GRAS 29.

Comprehensive monographs of the information relevant to the evaluations are also published as part of the FEMA Expert Panel’s ongoing GRAS re-evaluation program (see Hallagan and Hall (2009)). For more information on the FEMA GRAS program, please see “About the FEMA GRAS Program” on femaflavor.org.

The Panel reviewed the GRAS application and supporting information regarding 1-(3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)ethanone (CAS 21145-77-7) and concluded that the substance is GRAS (FEMA 4879) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of aromatic substituted secondary alcohols, ketones, and related esters (Adams et al., 2007; JECFA, 2001, 2011, 2017; SLR, C14). The Panel calculated the anticipated per capita intake (“eaters only”) of 1-(3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)ethanone from use as a flavor ingredient to be 14 µg/person/day, which is below the threshold of toxicological concern for structural class II (540 µg/person/day) (Munro et al., 1996). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. It is presumed that 1-(3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)ethanone will undergo oxidation at multiple positions and the polar metabolites are excreted in the feces and urine (Api et al., 2013; Girkin, 1998; Smith et al., 2018; Yang et al., 2015). No increases in the number of chromosome aberrations in an in vitro chromosomal aberration assay in CHO cells without S9 metabolic activation were noted. Statistically significant increases in numerical chromosomal aberrations were observed for this substance in the presence of S9 metabolic activation under conditions of four hours of exposure with a 44-hour recovery period as well as four hours of exposure with a 20-hour recovery period. However, because these data were within historical control ranges and gave no evidence of a dose response, the study authors concluded that 1-(3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)ethanone is negative for structural and numerical chromosomal aberrations in vitro (Api and San, 1999; Curry, 1995). In an in vivo micronucleus induction assay, no increases in the occurrence of micro-nucleated polychromatic erythrocytes were observed relative to vehicle controls in male and female ICR mice intraperitoneally injected with 1-(3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)ethanone (Api and San, 1999; Gud and Ritter, 1997). Based on these results, as well as the structure of the substance and the arrangement and identity of the functional groups therein, the Panel did not identify specific concerns related to the genotoxicity of 1-(3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)ethanone. A 13-week toxicity study of 1-(3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)ethanone in Crl:CD(SD)BR (VAF plus) rats resulted in a no observed adverse effect level (NOAEL) of greater than 15 mg/kg bw/day (Api et al., 2004) which is greater than 62.500 times the anticipated daily per capita intake of 1-(3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)ethanone from use as a flavor ingredient.

The Panel reviewed the GRAS application and supporting information regarding 2-(4-ethylphenoxy)-N-(1H-pyrazol-3-yl)-N-(thiophen-2-ylmethyl)acetamide (CAS 2015188-50-8) and concluded that the substance is GRAS (FEMA 4880) (Smith et al., 2005) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of miscellaneous nitrogen-containing substances (JECFA, 2006, 2009, 2012, 2015; SLR, D19). The Panel calculated the anticipated per capita intake (“eaters only”) of 2-(4-ethylphenoxy)-N-(1H-pyrazol-3-yl)-N-(thiophen-2-ylmethyl)acetamide for use as a flavor ingredient to be 290 µg/person/day, which is above the threshold of toxicological concern for structural class III (90 µg/person/day) (Munro et al., 1996). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. The Panel evaluated sensory data that were included within the application and found them satisfactory with regards to intended conditions of use for the flavoring ingredient (Harman and Hallagan, 2013). Based on the structural relative, 2-(4-methylphenoxy)-N-(1H-pyrazol-3-yl)-N-(thiophen-2-ylmethyl)acetamide (FEMA 4809), it is presumed that 2-(4-ethylphenoxy)-N-(1H-pyrazol-3-yl)-N-(thiophen-2-ylmethyl)acetamide will be rapidly hydrolyzed to yield the secondary amine product and 4-ethylphenoxyacetic acid (Smith et al., 2018). In addition to hydrolysis, oxidation at several sites on the substance is likely, and the more polar metabolites are expected to be excreted in the urine or feces either without further reaction or after conjugation (Karanewsky et al., 2015). No increases in the number of reverse mutations were observed in the Ames assay for the structurally related substance, 2-(4-methylphenoxy)-N-(1H-pyrazol-3-yl)-N-(thiophen-2-ylmethyl)acetamide, in Salmonella typhimurium (S. typhimurium) strains TA98, TA100, TA1535 and TA1537 and Escherichia coli (E. coli) WP2uvrA in either the absence or presence of S9 metabolic activation (Karanewsky et al., 2015). For the same structural relative, no genotoxic potential was observed in an in vitro chromosomal aberration assay in the presence of S9 metabolic activation. In the absence of S9 metabolic activation positive results were observed. However, in a combined in vivo micronucleus/comet assay no increases in polychromatic erythrocytes or DNA damage were observed (Karanewsky et al., 2015). Based on these results, as well as the structure of the substance and the arrangement and identity of the functional groups therein, the Panel did not identify specific concerns related to the genotoxicity of 2-(4-ethylphenoxy)-N-(1H-pyrazol-3-yl)-N-(thiophen-2-ylmethyl)acetamide. A 28-day dietary study for structurally related substance, 2-(4-methylphenoxy)-N-(1H-pyrazol-3-yl)-N-(thiophen-2-ylmethyl)acetamide (FEMA 4809), in male and female rats resulted in a NOAEL of greater than 100 mg/kg.
bw/day. A 90-day dietary study for structurally related substance, 2-(4-methylphenoxo)-N-{1H-pyrazol-3-yl}-N-(thiophen-2-ylmethyl)acetamide in male and female rats resulted in a NOAEL of greater than 100 mg/kg bw/day (Karanewsky et al., 2015). This is greater than 20,000 times the anticipated daily per capita intake of 2-(4-ethoxyphenoxo)-N-{1H-pyrazol-3-yl}-N-(thiophen-2-ylmethyl)acetamide from use as a flavor ingredient.

The Panel reviewed the GRAS application and supporting information regarding N-(3-hydroxy-4-methoxyphenyl)-2-isopropyl-5,5-dimethylcyclohexanecarboxamide (CAS 185731-84-0) (Smith et al., 2005a) and concluded that the substance, from use as a flavor ingredient to be 15 µg/person/day, which is below the threshold of toxicological concern for structural class III (90 µg/person/day) (Munro et al., 1996). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. Based on the lack of amide hydrolysis observed for the structurally related substance, N-(3-hydroxy-4-methoxyphenyl)-2-isopropyl-5,5-dimethylcyclohexanecarboxamide (FEMA 4881) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application provided for FEMA GRAS evaluation.
The Panel reviewed the GRAS application and supporting information regarding 6-methyl-5-hepten-2-ol (CAS 1569-60-9) (Smith et al., 2005a) and concluded that the substance is GRAS (FEMA 4884) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). The substance was evaluated individually within the context of the chemical group of aliphatic secondary alcohols, ketones and related substances (JECFA, 1999, 2003, 2017; SLR, A1). The Panel calculated the anticipated per capita intake of 6-methyl-5-hepten-2-ol from use as a flavor ingredient to be 0.3 µg/person/day, which is below the threshold of toxicological concern for structural class I (1800 µg/person/day) (Munro et al., 1996). The substance occurs naturally in cardamom (1000 ppm) (Nijssen, 2019). However, due to limited quantitative data, a consumption ratio could not be calculated. The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. It is presumed that 6-methyl-5-dodecenal will oxidize to the corresponding unsaturated carboxylic acid. Because the double bond is at an odd-numbered carbon, the resulting delta-3-enoyl-CoA from acetyl-CoA fragmentation must be isomerized by enoyl CoA isomerase to the trans-delta-2- enoyl CoA before it can re-enter the fatty acid cycle for complete metabolism to CO$_2$ and water (Feldman and Weiner, 1972; Eckfeldt and Yonetani, 1982; Nakayasu et al., 1978; Beedham, 1988; Nelson and Cox, 2008). A negative Ames assay was reported for the structurally related substance, 10-undecen-1-al (FEMA 3095), in S. typhimurium strains TA98, TA100, TA1535, and TA1537 in the presence and absence of S9 metabolic activation (Bhatia et al., 2010; Sokolowski, 2007a). Negative results for 10-undecen-1-al were also reported in an in vivo micronucleus test in male and female NMRI mice (Bhatia et al., 2010; Honavar, 2007). Similar negative results were reported in the Ames assay using the same S. typhimurium strains and in vivo mouse micronucleus tests using male and female NMRI mice for another structural relative, trans-4-decen-1-al (FEMA 3264) (Bhatia et al., 2010; Sokolowski, 2007b; Honavar, 2008). Based on these results, as well as the structure of the substance and the arrangement and identity of the functional groups therein, the Panel did not identify specific concerns related to the genotoxicity of trans-5-dodecenal. A 90-day dietary study for structurally related substance, 10-undecen-1-al (FEMA 3095), in male and female Sprague-Dawley Crl:CD® (SD) IGS BR rats resulted in a NOAEL of 200 ppm, or approximately 14.3 mg/kg bw/day, (Liwawska and Watson, 2012) which is greater than 2,000,000 times the anticipated daily per capita intake of trans-5-dodecenal from use as a flavor ingredient. The Panel reviewed the GRAS application and supporting information regarding cis-6-dodecenal (CAS 126745-61-7) and concluded that the substance is GRAS (FEMA 4886) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of linear and branched-chain aliphatic, unsaturated, unconjugated alcohols, aldehydes, acids, and related esters (JECFA, 1999, 2012; SLR, M1). The Panel calculated the anticipated per capita intake (“eaters only”) of cis-6-dodecenal from use as a flavor ingredient to be 0.3 µg/person/day, which is below the threshold of toxicological concern for structural class I (1800 µg/person/day) (Munro et al., 1996). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. It is presumed that cis-6-dodecenal will be oxidized to the corresponding unsaturated carboxylic acid. The cis double bond is isomerized to the trans double bond by 3-hydroxyacyl-CoA epimerase before re-
entering the fatty acid cycle where it is converted to acetyl-CoA. The acetyl-CoA product then enters the citric acid cycle where it is metabolized to yield CO2 and water (Feldman and Weiner, 1972; Eckfeldt and Yonetani, 1982; Nakayasu et al., 1978; Beecham, 1988; Nelson and Cox, 2008). A negative Ames assay was reported for the structurally related substance, 10-undecenal (FEMA 3095), using S. typhimurium strains TA98, TA100, TA102, TA1535, and TA1537 in the presence and absence of S9 metabolic activation (Bhatia et al., 2010; Sokolowski, 2007a). Negative results for 10-undecenal (FEMA 3095) were also reported in an in vivo micronucleus test in male and female NMRI mice (Bhatia et al., 2010; Honarvar, 2007). Similar negative results were reported in the Ames assay using the same S. typhimurium strains and in vivo mouse micronucleus tests using male and female NMRI mice for another structural relative, trans-4-decen-1-ol (FEMA 3264) (Bhatia et al., 2010; Sokolowski, 2007b; Honarvar, 2008). Based on these results, as well as the structure of the substance and the arrangement and identity of the functional groups therein, the Panel did not identify specific concerns related to the genotoxicity of cis-6-dodecenal. A 90-day dietary study for structurally related substance, 10-undecenal (FEMA 3095), in male and female Sprague-Dawley CrI:CD® (SD) IGS BR rats resulted in a NOAEL of 200 ppm, or approximately 14.3 mg/kg bw/day (Liwska and Watson, 2012), which is greater than 2,000,000 times the anticipated daily per capita intake of cis-9-dodecenal from use as a flavor ingredient.

The Panel reviewed the GRAS application and supporting information regarding mixture of 5-hydroxy-4-(4’-hydroxy-3’-methoxyphenyl)-7-methylchroman-2-one and 7-hydroxy-4-(4’-hydroxy-3’-methoxyphenyl)-5-methylchroman-2-one (CAS 1945993-01-0 and 828265-08-3) and concluded that the substance is GRAS (FEMA 4888) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of phenol and phenol derivatives (JECFA, 2001, 2011, 2012; SLR, C12). The Panel calculated the anticipated per capita intake (“eaters only”) of from use as a flavor ingredient to be 6 µg/person/day, which is below the threshold of toxicological concern for structural class III (90 µg/person/day) (Munro et al., 1996). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. The Panel evaluated sensory data included within the application and found it satisfactory with regard to intended conditions of use for the flavoring ingredient (Harman and Hallagan, 2013). It is presumed that the will undergo facile enzyme-catalyzed lactone ring-opening, likely followed by excretion or conjugation followed by excretion. Additional metabolic outcomes include hydroxylation, reduction, and conjugation with sulfate or glucuronic acid (Horrigan, 2016). The mixture of 5-hydroxy-4-(4’-hydroxy-3’-methoxyphenyl)-7-methylchroman-2-one and 7-hydroxy-4-(4’-hydroxy-3’-methoxyphenyl)-5-methylchroman-2-one was negative for genotoxicity in an Ames assay with S. typhimurium strains TA98, TA100, TA1535, and TA1537 as well as E. coli strain WP2 uvrA (pKM101) in the presence or absence of S9 metabolic activation (Wisher, 2016). In an in vitro micronucleus assay in CHO-K1 cells, the mixture did not induce increases in micronucleated cells in the presence or absence of S9 metabolic activation (Diaz et al., 2007; Zhao, 2016). One of the constituents of the mixture, (R)-5-hydroxy-4-(4’-hydroxy-3’-methoxyphenyl)-7-methylchroman-2-one (FEMA 4834), yielded negative results in an Ames assay conducted in S. typhimurium strains TA98, TA100, TA1535, and TA1537 and E. coli strain WP2 uvrA (pKM101) in the presence and absence of S9 metabolic activation (Soltesova, 2015). This single component of the mixture also did not induce increases in micronucleated cells in an in vitro micronucleus assay conducted in CHO-K1 cells in the presence or absence of S9 metabolic activation (Zhao, 2016).

The Panel reviewed the GRAS application and supporting information regarding methyl propyl sulfide (CAS 3877-15-4) and concluded that the substance is GRAS (FEMA 4887) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of simple aliphatic and aromatic sulfides and thiols (SLR B4, JECFA 2000, 2004, 2008, 2011). The Panel calculated the
anticipated per capita intake ("eaters only") of 0.03 µg/person/day, which is below the threshold of toxicological concern for structural class I (1800 µg/person/day) (Munro et al., 1996). This substance occurs naturally in beef, chive, Guinea hen, kohlrabi, onion, and cured pork (Njissen, 2019). Due to limited quantitative data, a consumption ratio could not be calculated. The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. It is presumed that methyl propyl sulfide will undergo S-oxidation to the sulfoxide, and to a lesser extent the sulfone, for excretion in urine (Damani, 1987). Based on these results, as well as the structure of the substance and the arrangement and identity of the functional groups therein, the Panel did not identify specific concerns related to the genotoxicity of methyl propyl sulfide. A 14-week dietary study for structurally related substance, dimethyl sulfide (FEMA 2746), in male and female Wistar rats resulted in a NOAEL of 250 mg/kg bw/day (Butterworth et al., 1975) which is 500,000,000 times the anticipated daily per capita intake of methyl propyl sulfide from use as a flavor ingredient.

The Panel reviewed the GRAS application and supporting information regarding 3-p-menthen-7-al (CAS 27841-22-1) and concluded that the substance is GRAS (FEMA 4890) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of linear and branched-chain aliphatic, unsaturated, conjugated aldehydes, acids, esters, and related esters (JECFA, 2000, 2007, 2012, 2014; SLR, M1). The Panel calculated the anticipated per capita intake ("eaters only") of (E)-3-methyl-4-dodecenoic acid from use as a flavor ingredient to be 0.001 µg/person/day, which is below the threshold of toxicological concern for structural class I (1800 µg/person/day) (Munro et al., 1996). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. It is presumed that 3-p-menthen-7-al will be oxidized to yield the corresponding carboxylic acid and be excreted in urine unchanged or as a glycine conjugate (Ishida et al., 1989). Mutagenesis was not observed in the Ames assay (Cox, 2008). No increases in the frequency of revertant colonies were observed in the Ames assay for this substance in S. typhimurium strains TA98 and TA100 in the presence of S9 metabolic activation (Komai, 2016b). Structural relative perillylaldehyde (FEMA 3557) induced reverse mutations in an Ames assay in the absence of S9 metabolic activation in S. typhimurium strain TA98 but was negative in this strain in the presence of S9 metabolic activation. This structural relative yielded negative results in S. typhimurium strains TA100, TA102, TA1535, and TA1537 in the presence and absence of S9 metabolic activation. In an in vitro micronucleus assay in human lymphocytes, perillylaldehyde (FEMA 3557) did not increase the frequency of micronucleated binuclear cells in the presence and absence of S9 metabolic activation. Perillylaldehyde (FEMA 3557) was negative in an hypoxanthine-guanine phosphoribosyltransferase (HPRT) assay in mouse lymphoma cells in the presence and absence of S9 metabolic activation. Perillylaldehyde (FEMA 3557) did not increase micronucleated cells in the bone marrow of Han Wistar rats and was negative in the comet assay in the duodenum in a comet/micronucleus combined assay. In the same assay for this substance, increased comet tail intensity was observed in the liver at a hepatotoxic dose but these values were within the laboratory’s historical control ranges (Hobbs et al., 2016). Based on these results, as well as the structure of the substance and the arrangement and identity of the functional groups therein, the Panel did not identify specific concerns related to the genotoxicity of 3-p-menthen-7-7-al (Cohen et al., 2016). A 90-day dietary study of structural relative perillyl alcohol (FEMA 2664) conducted in male and female Fischer 344 rats resulted in a NOAEL of the highest tested dose of 400 mg/kg bw/day (NCI, 1996) which is 20,000,000,000 times the anticipated per capita daily intake of 3-p-menthen-7-7-al from use as a flavor ingredient. In a 90-day oral gavage toxicity study in male and female beagle dogs, a NOAEL of 120 mg/kg bw/day was determined for perillyl alcohol (FEMA 2664) (NCI, 1996). This NOAEL is 6,000,000,000 times the anticipated per capita daily intake of 3-p-menthen-7-7-al from use as a flavor ingredient.

The Panel reviewed the GRAS application and supporting information regarding (E)-3-methyl-4-dodecenoic acid (CAS 2088117-65-9) and concluded that the substance is GRAS (FEMA 4891) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of linear and branched-chained aliphatic, unsaturated, conjugated aldehydes, acids, esters, and related esters. A 14-week dietary study for structurally related substance, dimethyl sulfide (FEMA 2746), in male and female Wistar rats resulted in a NOAEL of 250 mg/kg bw/day (Butterworth et al., 1975) which is 500,000,000 times the anticipated daily per capita intake of methyl propyl sulfide from use as a flavor ingredient.
The Panel calculated the anticipated per capita intake ("eaters only") of cis-2-hexylcyclopropaneacetic acid from use as a flavor ingredient to be 0.001 μg/person/day, which is below the threshold of toxicological concern for structural class II (540 μg/person/day) (Munro et al., 1996). This substance is reported to occur naturally in *Croton eleuteria*, a medicinal shrub, as well as the essential oil derived from it, cascarilla oil (Lawrence, 1977). However, these are not commonly consumed as food. The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. It is presumed that cis-2-hexylcyclopropaneacetic acid will undergo conjugation to create glycine and glucuronide conjugates. This substance could also undergo beta-oxidation to produce cyclopropene carboxylic acid which would lead to the corresponding glycine and glucuronide conjugates. These conjugates can be excreted in urine (Smith et al., 2018). No increases in the frequency of revertant colonies were observed in an Ames assay for this substance conducted in *S. typhimurium* strains TA98 and TA100 in the presence and absence of S9 metabolic activation (Komai, 2016c). In an Ames assay for structural relative oleic acid (FEMA 2815) in *S. typhimurium* strains TA98, TA100, TA1535, and TA1537 as well as *E. coli* strain WP2uv/Ar, no increase in the frequency of revertant colonies was observed in the presence and absence of S9 metabolic activation (Shimizu, 1985). Based on these results, as well as the structure of the substance and the arrangement and identity of the functional groups therein, the Panel did not identify specific concerns related to the genotoxicity of cis-2-hexylcyclopropaneacetic acid. In a 180-day study in male and female Sprague-Dawley rats, oral administration of the structural relative 10-undecenoic acid (FEMA 3247) resulted in a NOAEL of 400 mg/kg bw/day, which was the highest dose tested (Tsikow et al., 1950). This NOAEL is 2,000,000,000 times the anticipated daily per capita intake of cis-2-hexylcyclopropaneacetic acid from use as a flavor ingredient.

The Panel reviewed the GRAS application and supporting information regarding 2-ethoxy-4-(hydroxymethyl)phenol (CAS 4912-58-7) and concluded that the substance is GRAS (FEMA 4693) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of hydroxy- and alkylx-substituted benzyl derivatives (JECFA, 2001, 2006, 2009; SLR, C9). The Panel calculated the anticipated per capita intake ("eaters only") of 2-ethoxy-4-(hydroxymethyl)phenol from use as a flavor ingredient to be 21 μg/person/day, which is below the threshold of toxicological concern for structural class I (1800 μg/person/day) (Munro et al., 1996). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. It is presumed that 2-ethoxy-4-(hydroxymethyl)phenol will form glucuronic acid or sulfate conjugates. This substance is also presumed to undergo oxidation to ethyl vanilllic acid, forming sulfate or glucuronic acid conjugates that are expelled in urine (Dirschler and Wirtzfeld, 1964; Sammons and Williams, 1941; Strand and Scheline, 1975; Wong and Sourkes, 1966). Negative results were observed in the Ames assays for the structurally related substance, vanillin (FEMA 3107), in *S. typhimurium* strains TA92, TA94, TA97, TA98, TA100, TA102, TA104, TA1535, TA1537, TA1538, and TA2637 using the plate incorporation and pre-incubation methodologies (De Flora et al., 1994; Florin et al., 1980a; Ishidate et al., 1984; Jones, 1986; Kasamaki et al., 1982; Lawlor, 1991; Marzin, 1979a; Mortelmans et al., 1986; Nagabhushan and Bhide, 1985; Pool and Lin, 1982; Rapson et al., 1980). For the same structural relative, mixed positive and negative results were observed in in vitro sister chromatid exchange, chromosomal aberration and micronucleus induction assays conducted in Chinese hamster cells, human lymphocytes, and human cell lines (Jansson et al., 1986, 1987; Sanyal et al., 1997, Sasaki et al., 1987). Vanillin (FEMA 3107) was negative in an unscheduled DNA synthesis assay in rat hepatocytes (Heck et al., 1989) and was negative in bone marrow micronucleus assays in female OF1 mice, male BDF1 mice, and in male MS/Ae mice (Inouye et al., 1988; Marzin, 1979b; Sutou et al., 1999). Based on these results, as well as the structure of the substance and the arrangement and identity of the functional groups therein, the Panel did not identify specific concerns related to the genotoxicity of 2-ethoxy-4-(hydroxymethyl)phenol. Administration of vanillin (FEMA 3107) to pregnant mice by oral gavage from gestation day 10 until postnatal day 30 showed no adverse effects. NOAEL values of at least 1500 mg/kg bw/day for maternal toxicity and teratogenicity were reported (OECD SiDS, 2002). No reproductive or developmental effects were reported for Crl CD rats administered vanillin (FEMA 3107) at concentrations up to 200 mg/kg bw/day (Tisdow et al., 1957). No increases in the frequency of revertant colonies were observed in an Ames assay for this substance (Mancebo et al., 2003). In a 13-week study in Sprague Dawley rats, oral administration of vanillin (FEMA 3107) resulted in a NOAEL at the highest tested dose level, 400 mg/kg bw/day (Mancebo et al., 2003). In a 13-week study in male and female CD Sprague Dawley rats, dietary administration of the structural relative ethyl vanillin (FEMA 2464) at doses of 500, 1000, and 2000 mg/kg bw/day resulted in a NOAEL of 500 mg/kg bw/day (Hooks et al., 1992) which is 1,428,000 times the daily per capita intake of 2-ethoxy-4-(hydroxymethyl)phenol when used as a flavoring ingredient.

The Panel reviewed the GRAS application and supporting information regarding 2-mercapto-3-methyl-1-butanol (CAS 116229-37-9) and concluded that the substance is GRAS (FEMA 4894) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of simple aliphatic and aromatic sulfides and thiols (JECFA, 2000, 2004, 2008, 2011; SLR, B5B). The Panel calculated the anticipated per capita intake ("eaters only") of 2-mercapto-3-methyl-1-butanol from use as a flavor ingredient to be 0.1 μg/person/day, which is below the threshold of toxicological concern for structural class I (1800 μg/person/day) (Munro et al., 1996). This substance occurs naturally in beer (Nijssen et al., 2019). However, no consumption ratio could be calculated as no quantitative data was available. The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. It is presumed that thiol group of 2-mercapto-3-methyl-1-butanol undergoes oxidation and results in sulfenic, sulfenic, and sulfonic acids products to be eliminated in the urine. Alternatively, the thiol group could also undergo methylation. Additionally, any hydroxylated products can form
the corresponding carboxylic acid and/or be converted to sulfate or glucuronic acid conjugates and be eliminated in urine (Mc Bain and Menn, 1969; Dutton and Illing, 1972; Maiorino et al., 1988; Richardson et al., 1991; Renwick, 1996). Negative results were observed in an Ames assay for this substance using S. typhimurium strains TA98, TA100, TA1535, and TA1537 as well as E. coli strain WP2 uvrA (pKM101) in the presence and absence of S9 metabolic activation (Ogura, 2014). Based on these results, as well as the structure of the substance and the arrangement and identity of the functional groups therein, the Panel did not identify specific concerns related to the genotoxicity of 2-mercapto-3-methyl-1-butanol. A 90-day dietary study for structurally related substance, 3-mercapto-2-butanol (FEMA 3502), in male and female Sprague Dawley Crl:CD® (SD) IGS BR rats resulted in a NOAEL of greater than 0.705 mg/kg bw/day (Cox et al., 1974b) which is 352,500 times the anticipated daily per capita intake of 2-mercapto-3-methyl-1-butanol from use as a flavor ingredient.

The Panel reviewed the natural flavor complex GRAS application and supporting information regarding rebaudioside M (CAS 1220616-44-3) and concluded that the material is GRAS (FEMA 4895) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This material was evaluated within the context of the procedure for the FEMA GRAS evaluation of flavor ingredients produced through biotechnology processes (Cohen et al., 2015; Smith et al., 2005a). The Panel calculated the anticipated per capita intake ("eaters only") of rebaudioside M from use as a flavor ingredient to be 785 µg/person/day. Rebaudioside M is derived from the leaves of Stevia rebaudiana (Ohta et al., 2010). The Panel evaluated sensory data included within the application and found it satisfactory with regard to intended conditions of use for the flavoring ingredient (Harman and Hallagan, 2013). Metabolic data exist for representative members of each congeneric group that would predict, at the levels specified in the GRAS application (see Table 2). The metabolism was evaluated individually within the context of the chemical group of aliphatic and aromatic amines and amides (JECFA, 2006, 2008, 2011, 2012; SLR, A7, C21). The Panel calculated the anticipated per capita intake ("eaters only") of N-(2-hydroxy-2-phenethyl)-2-isopropyl-5,5-dimethylcyclohexan-1-carboxamide from use as a flavor ingredient to be 71 µg/person/day, which is below the threshold of toxicological concern for structural class III (90 µg/person/day) (Munro et al., 1996). The Panel considered the specification of the material to be adequately characterized by the published assay and supporting spectral data provided for FEMA GRAS evaluation. It is presumed that N-(2-hydroxy-2-phenethyl)-2-isopropyl-5,5-dimethylcyclohexan-1-carboxamide will undergo metabolism through conjugation of the hydroxyl moiety with glucuronic acid or sulfate followed by excretion in the urine. Additionally, hydroxylation of the alkyl substituents and ring positions would occur to yield hydroxylated metabolites likely to be excreted in the urine as glucuronic acid or sulfate conjugates (James, 1974). No increases in the number of reverse mutations were observed in the Ames assay for N-(2-hydroxy-2-phenethyl)-2-isopropyl-5,5-dimethylcyclohexan-1-carboxamide, there was a significant, concentration dependent increase in the frequency of micronucleated polychromatic erythrocytes in the presence of S9 metabolic activation (Furukuma, 2017). An in vivo mouse micronucleus assay of N-(2-hydroxy-2-phenethyl)-2-isopropyl-5,5-dimethylcyclohexan-1-carboxamide showed no significant increases of micronucleated bone marrow cells in male Crl:CD1(ICR) mice (Aoyama, 2017). Based on the overall weight of evidence based on the lack of mutagenicity in the Ames assay and the negative in vivo micronucleus induction assay, the Panel did not identify specific concerns for the genotoxic potential of N-(2-hydroxy-2-phenethyl)-2-isopropyl-5,5-dimethylcyclohexan-1-carboxamide. In a 90-day toxicity study in male and female Crl:CD(SD) rats, oral administration of the structurally related substance, N-(ethoxy carbonyl)methyl)-p-menthane-3-carboxamide (FEMA 4309), resulted in a NOAEL of 225 mg/kg bw/day (Kirkpatrick, 2011), which is 225,000 times the anticipated daily per capita intake of N-(2-hydroxy-2-phenethyl)-2-isopropyl-5,5-dimethylcyclohexan-1-carboxamide from use as a flavor ingredient. A 28-day toxicity study of structurally related substance, N-ethyl-2-isopropyl-5-methylcyclohexane carboxamide (FEMA 3455), in male and female Crl:CD (SD) rats resulted in a NOAEL of 8 mg/kg bw/day (Myata, 1995). This NOAEL is 8,000 times the anticipated daily per capita intake of N-(2-hydroxy-2-phenethyl)-2-isopropyl-5,5-
dimethylcyclohexane-1-carboxamide from use as a flavor ingredient.

The Panel reviewed the GRAS application and supporting information regarding allulose (CAS 551-68-8) and concluded that the substance is GRAS (FEMA 4897) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This material was evaluated within the context of the chemical group of aliphatic poly-hydroxy compounds and derivaties (SLR, B1F). The Panel calculated the anticipated per capita intake (“eaters only”) of allulose from use as a flavor ingredient to be 34,000 μg/person/day, which is above the threshold of toxicological concern for structural class I (1800 μg/person/day) (Munro et al., 1996). This substance occurs naturally in figs, raisins, tomato ketchup, brown sugar, and caramel sauce (Oshima et al., 2006). The consumption ratio was calculated to be 0.1 based on the available quantitative data. The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. The Panel evaluated sensory data included within the application and found it satisfactory with regard to intended conditions of use for the flavoring ingredient (Harman and Hallagan, 2013). Approximately 98% of 13C-allulose administered to rats was rapidly excreted within the first 6 hours (Whistler et al., 1974). The panel also considered a 14C radio label experiment in which eight humans were administered allulose which was then eliminated through urine. Similar rapid excretion was observed when human volunteers orally consumed allulose with the majority eliminated in the urine within 24 hours of consumption. No mutagenic potential was observed in the presence and absence of S9 metabolic activation in an Ames assay for this substance conducted in S. typhimurium strains TA98, TA100, TA1535, and TA1537 as well as in E. coli strain WP2 uvrA (pKM101) at doses up to 5,000 μg/plate (Huntington Lab, 2011 as cited in GRN 400). A micronucleus study of this substance in CD1 mice yielded no significant increases in micronucleated polychromatic erythrocytes at concentrations up to 2,000 mg/kg/day relative to the control group (Huntington Lab, 2011). An in vivo chromosomal aberration assay of allulose (synonym D-psicose) yielded negative results at doses up to 1,800 μg/mL (Huntington Lab, 2011). Based on the structure of the substance and the arrangement and identity of the functional groups therein, the Panel did not identify specific concerns related to the genotoxicity of allulose. In a 90-day comparative dietary feeding study in which male Wistar rats were administered 3% allulose and 3% sucrose, or 1.67 g/kg bw/day of allulose and sucrose, histopathology assessments of major organs showed no significant toxicologic effects (Matsuo et al., 2011). A 12-18 month study of allulose and sucrose administered to male Wistar rats at the same doses found significantly higher mean value of pathological lesions in the liver for the allulose group than the sucrose group at the conclusion of the study (Yagi and Matsuo, 2009). The Panel determined the Lowest Observed Adverse Effect Level (LOAEL) to be 1.67 g/kg bw/day (Matsuo et al., 2011; Yagi and Matsuo, 2009), which is greater than 2,900 times the anticipated daily per capita intake of allulose from use as a flavoring ingredient.

The Panel reviewed the GRAS application and supporting information regarding trans-5-octenal (CAS 41547-29-9) and concluded that the substance is GRAS (FEMA 4898) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of linear and branch-chain aliphatic, unsaturated, unconjugated alcohols, aldehydes, acids, and related esters (JECFA, 1999, 2012; SLR, M1). The Panel calculated the anticipated per capita intake (“eaters only”) of trans-5-octenal from use as a flavor ingredient to be 7 μg/person/day, which is below the threshold of toxicological concern for structural class I (1800 μg/person/day) (Munro et al., 1996). This substance occurs naturally in trace amounts in lemon peels (Cannon et al., 2015). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. It is presumed that trans-5-octenal will undergo oxidation to the corresponding unsaturated carboxylic acid. Because the double bond is at an odd-numbered carbon, the resulting Δ3 enoyl-CoA from acetyl-CoA fragmentation must be isomerized by enoyl-CoA isomerase to the trans-delta-2 enoyl-CoA before it can re-enter the fatty acid cycle for complete metabolism to CO₂ and water (Smith et al., 2018). Negative results were observed in an Ames assay incubating S. typhimurium strains TA98, TA100, TA1535, and TA1537 with the geometric isomer cis-5-octenal (FEMA 3749) in the presence and absence of S9 metabolic activation (Asquith, 1990a). In another Ames assay conducted in S. typhimurium strains TA98 and TA100 for the constitutional isomer trans-5-octenal (FEMA 4787), no mutagenicity was observed up to 50 μg/plate in the presence and absence of S9 (Kawaguchi and Komai, 2012). Based on these results, as well as the structure of the substance and the arrangement and identity of the functional groups therein, the Panel did not identify specific concerns related to the genotoxicity of trans-5-octenal. A 98-day toxicity study of structural relative cis-3-hexen-1-ol (FEMA 2563) administered to male and female SPF-derived CFE weanling rats via drinking water resulted in a No Observed Effect Level (NOEL) of 120 mg/kg bw/day (Gaunt et al., 1969). This is 1,000,000 times the anticipated daily per capita intake of trans-5-octenal from use as a flavor ingredient.
flavoring ingredient (Harman and Hallagan, 2013). It is presumed that N-1-((4-amino-2,2-dioxido-1H-benzo[c][1,2,6]thiazin-5-yl)oxy)-2-methylprop-2-yl)-2,6-dimethylisonicotinamide is metabolized to its corresponding monothiols, hexyl sulfide, and propyl sulfide, followed by enzymatic oxidation to produce sulfenic acids, sulfinic acids, and ultimately, sulfonic acids.

The thiol products could also react with glutathione to form thiocarbonate (FEMA 4043) tested negative at concentrations up to 350 μg/ml in the presence and absence of S9 incubated for three hours with a 24-hour fixation time. In the second experiment, a dose dependent increase of cells with up to 350 μg/ml in the presence and absence of S9 when incubated for three hours with a 24-hour fixation time. In the second experiment, a dose dependent increase of cells with up to 350 μg/ml in the presence and absence of S9 when incubated for three hours with a 24-hour fixation time. It is presumed that the substance is GRAS (FEMA 4901) (Smith et al., 2005a) for use as a flavor ingredient in food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of simple aliphatic and aromatic sulfides and thiols (JECA, 2000, 2004, 2008, 2011; SLR, A8). The Panel calculated the anticipated daily per capita intake ("eaters only") of O-ethyl S-(3-methylbut-2-en-1-yl) thiocarbonate from use as a flavor ingredient to be 0.01 μg/person/day, which is below the threshold of toxicological concern for structural class I (1800 μg/person/day) (Munro et al., 1996). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. It is presumed that O-ethyl S-(3-methylbut-2-en-1-yl) thiocarbonate undergoes rapid hydrolysis by esterases to yield carbonic acid, which will be excreted in the urine in its unconjugated or conjugated form (Kurooka et al., 1976). Negative results were observed in an Ames assay for structurally related substance, O-ethyl S-(2-furylmethyl) thiocarbonate (FEMA 4043), both in the presence or absence of S9 in S. typhimurium strains TA98, TA100, TA1535, and TA1537 yielded negative results in the presence and absence of S9 at doses of up to 333 μg/ml for the structural relative allyl propyl disulfide (FEMA 4073) (Zeiger et al., 1988). Positive results were observed in sister chromatid exchange and chromosomal aberration assays conducted in CHO cells for a second structural relative, allyl disulfide (FEMA 2028). An increase in chromosomal aberrations was observed in CHO cells treated with allyl disulfide (FEMA 2028) in the presence of S9 and a decrease in the occurrence of sister chromatid exchanges was noted for allyl disulfide (FEMA 2028) in the presence of S9 (Musk et al., 1997). No increases in micronucleated polychromatic erythrocytes in ICR mouse bone marrow cells were observed, when groups of male ICR mice were gavage administered a 50 or 100 mg/kg bw corn oil mixture of allyl disulfide (FEMA 2028), allyl sulfide (FEMA 2042), and diallyl trisulfide (FEMA 3265) (Marks et al., 1992). Based on weight of evidence, as well as the structure of the substance and the arrangement and identity of the functional groups therein, the Panel did not identify specific concerns related to the genotoxicity of hexyl propyl disulfide. A 90-day toxicity study of structural relative propyl disulfide (FEMA 3228) in male and female Charles River CD rats resulted in NOAELs of 7.29 and 8.17 mg/kg bw/day respectively (Posternak et al., 1969). The dose of 7.29 mg/kg bw/day is greater than 1,400,000 times the anticipated daily per capita intake of hexyl propyl disulfide from use as a flavor ingredient.

The Panel reviewed the GRAS application and supporting information regarding O-ethyl S-(3-methylbut-2-en-1-yl) thiocarbonate (CAS 2087608-89-2) and concluded that the substance is GRAS (FEMA 4001) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of aliphatic thiols, subgroup of acyclic sulfides with oxidized side-chains (JECA, 2004, 2012; SLR, A8). The Panel calculated the anticipated per capita intake ("eaters only") of O-ethyl S-(3-methylbut-2-en-1-yl) thiocarbonate from use as a flavor ingredient to be 0.01 μg/person/day, which is below the threshold of toxicological concern for structural class I (1800 μg/person/day) (Munro et al., 1996). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. It is presumed that O-ethyl S-(3-methylbut-2-en-1-yl) thiocarbonate undergoes rapid hydrolysis by esterases to yield carbonic acid, which will be excreted in the urine in its unconjugated or conjugated form (Kurooka et al., 1976). Negative results were observed in an Ames assay for structurally related substance, O-ethyl S-(2-furylmethyl) thiocarbonate (FEMA 4043), both in the presence or absence of S9 in S. typhimurium strains TA98, TA100, TA1535, and TA1537 as well as in E. coli strain WP2 uvAr in the presence and absence of S9 metabolically activated (Bruce, 2017; Wagner, 2016). An in vitro micronucleus assay in human peripheral blood lymphocytes produced negative results for the genotoxicity of this substance both in the presence and absence of S9 (Roy, 2016). Based on these results, as well as the structure of the substance and the arrangement and identity of the functional groups therein, the Panel did not identify specific concerns related to the genotoxicity of N-1-((4-amino-2,2-dioxido-1H-benzo[c][1,2,6]thiazin-5-yl)oxy)-2-methylprop-2-yl)-2,6-dimethylisonicotinamide. A developmental toxicity study for this substance in female CD [Cr:C(D)® (SD)] rats resulted in maternal and fetal NOAELs of the highest tested dose of 1,000 mg/kg bw/day (McElroy, 2017a, b). A 28-day toxicity study in male and female CD® [Cr:C(D)® (SD)] rats for N-1-((4-amino-2,2-dioxido-1H-benzo[c][1,2,6]thiazin-5-yl)oxy)-2-methylprop-2-yl)-2,6-dimethylisonicotinamide resulted in a NOAEL equivalent to the highest tested dose of 100 mg/kg bw/day (Daly, 2016). A 90-day toxicity study for N-1-((4-amino-2,2-dioxido-1H-benzo[c][1,2,6]thiazin-5-yl)oxy)-2-methylprop-2-yl)-2,6-dimethylisonicotinamide in male and female CD® [Cr:C(D)® (SD)] rats resulted in a NOAEL equivalent to the highest tested dose of 140 mg/kg bw/day (Daly, 2017), which is greater than 28,000 times the anticipated daily per capita intake of N-1-((4-amino-2,2-dioxido-1H-benzo[c][1,2,6]thiazin-5-yl)oxy)-2-methylprop-2-yl)-2,6-dimethylisonicotinamide from use as a flavor ingredient.
a dose dependent increase was observed at 325 and 375 μg/ml (Meerts, 2001). The same structural relative tested negative at an oral dose in vivo micronucleous assay in SPF mice at up to the highest dose of 500 mg/kg bw/day (Verspeek-Rip, 2001). Based on weight of evidence, as well as the structure of the substance and the arrangement and identity of the functional groups therein, the Panel did not identify specific concerns related to the genotoxicity of O-ethyl S-(3-methylbut-2-en-1-yl) thiocarbonate. A 28-day toxicity study of O-ethyl S-(2-furylmethyl) thiocarbonate (FEMA 4043) gavage administered to SPF-bred Wistar rats at 2, 8, and 32 mg/kg bw/day resulted in a NOAEL of 8 mg/kg bw/day (van Otterdijk, 2001), which is greater than 40,000,000 times the anticipated daily per capita intake of O-ethyl S-(3-methylbut-2-en-1-yl) thiocarbonate from use as a flavor ingredient.

The Panel reviewed the GRAS application and supporting information regarding 3-methyl-2(5H)-furanone (CAS 22122-36-7) and concluded that the substance is GRAS (FEMA 4902) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of aliphatic lactones (Adams et al., 1998; JECFA, 1999, 2004, 2011; SLR. B1C). The Panel calculated the anticipated per capita intake ("eaters only") of 3-methyl-2(5H)-furanone from use as a flavor ingredient to be 0.3 μg/person/day, which is below the threshold of toxicological concern for structural class III (90 μg/person/day) (Munro et al., 1996). This material is known to occur naturally in dired bonito, parmesan cheese, and shoyu but no consumption ratio could be calculated as only qualitative data was available (Nijessen, 2019). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. It is presumed that 3-methyl-2(5H)-furanone will hydrolyze to its corresponding ring opened alpha,beta-unsaturated hydroxycarboxylic acid. Upon hydrolysis, condensation with acetyl CoA yields a delta2-enoyl product, a substrate in the fatty acid pathway. Hydration of the cis double bond in this lactone yields (R)-3-hydroxyacyl CoA which is isomerized to (S)-3-hydroxyacyl CoA by 3-hydroxyacyl CoA isomererase before undergoing fatty acid metabolism. Alternatively, the alpha,beta-unsaturated lactone could conjugate with glutathione and be excreted as a cysteine or mercapturic acid derivative (Nelson and Cox, 2001). In an Ames assay for 3-methyl-2(5H)-furanone in S. typhimurium strains TA98, TA100, TA1535, and TA1537 as well as in E. coli strain WP2 uvrA, no mutagenicity was observed in the presence and absence of S9 at concentrations up to 5000 μg/plate (Ogura, 2014). An in vivo micronucleous assay recorded no increase in the frequency of micronucleated polychromatic erythrocytes at concentrations up to 750 mg/kg bw 3-methyl-2(5H)-furanone in male Crl:CD1(ICR) mice but showed significant increases in micronucleated cells at a mid-dose level of 500 mg/kg bw in female Crl:CD1(ICR) mice. However, because an increase in micronucleated cells was not observed at the low and high doses of 250 and 1000 mg/kg bw in the female mice, this positive result was not considered significant. (Ogura, 2017). An Ames assay conducted for structural relative furan-2(5H)-one (FEMA 4138) in S. typhimurium strains TA98, TA100, TA102, TA1535, and TA1537 yielded negative results up to 5000 μg/plate with and without S9 using the plate incorporation and pre-incubation methodologies (Bowen, 2011). An in vitro micronucleous assay in human peripheral blood lymphocytes incubated with furan-2(5H)-one (FEMA 4138) for 3 hours followed by a 21-hour recovery period in the presence of S9 or when incubated with the test substance for 24 hours with no recovery period in the absence of S9 or when incubated with the test substance for 24 hours with no recovery period in the absence of S9 (Whitwell, 2012). As a follow-up to these results, a combined in vivo mouse micronucleus and liver comet assay for furan-2(5H)-one (FEMA 4138) was conducted in outbred male Han Wistar rats. In this assay, no increase in micronucleated polychromatic erythrocytes was observed compared to concurrent and historical controls. A small increase in group mean % tail intensity was observed at the highest tested dose of 250 mg/kg bw, but not at the mid- and low-dose treatments in the comet assay. Coincident with the increase in group mean % tail intensity, decreased glycogen vacuolation and duodenum villous tip necrosis were observed for the 250 mg/kg bw group. These results were within the historical control range of the testing facility, and therefore were not attributed to the treatment with furan-2(5H)-one. The liver comet assay for furan-2(5H)-one yielded negative results for DNA damage in the liver (Beevers, 2014). Based on these results, as well as the structure of the substance and the arrangement and identity of the functional groups therein, the Panel did not identify specific concerns related to the genotoxicity of 3-methyl-2(5H)-furanone. A 13-week toxicity study of structural relative 4-hydroxybutyric acid (FEMA 3291) in male and female F344/N rats resulted in a NOAEL of 450 mg/kg bw/day (NTP, 1992) which is 90,000,000 times the anticipated daily per capita intake of 3-methyl-2(5H)-furanone from use as a flavor ingredient. A 2-year carcinogenicity study for the same structural relative was administered to B6C3F1 mice and F344/N rats by oral gavage, determined a NOAEL of 225 mg/kg bw/day for F344/N male rats (NTP, 1992). This NOAEL is 45,000,000 times the anticipated daily per capita intake of 3-methyl-2(5H)-furanone from use as a flavor ingredient. The Panel reviewed the GRAS application and supporting information regarding ethyl 3-methyl-2-oxopentanoate (CAS 26516-27-8) and concluded that the substance is GRAS (FEMA 4903) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of aliphatic carboxylic acids, acetals, and esters containing additional oxygenated functional groups (FEMA 4301, 2011; B1B). The Panel calculated the anticipated per capita intake ("eaters only") of 3-methyl-2-oxopentanoate from use as a flavor ingredient to be 1 μg/person/day, which is below the threshold of toxicological concern for structural class I (1800 μg/person/day) (Munro et al., 1996). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. It is presumed that ethyl 3-methyl-2-oxopentanoate will undergo hydrolysis to its corresponding alcohol and acid. The ethanol product would then be excreted by exhalation or undergo further metabolism in the corresponding alcohol and acid. The ethanol product would then be excreted by exhalation or undergo further metabolism in its corresponding alcohol and acid. The ethanol product would then be excreted by exhalation or undergo further metabolism in its corresponding alcohol and acid. The ethanol product would then be excreted by exhalation or undergo further metabolism in its corresponding alcohol and acid. The ethanol product would then be excreted by exhalation or undergo further metabolism in its corresponding alcohol and acid. The ethanol product would then be excreted by exhalation or undergo further metabolism in its corresponding alcohol and acid. The ethanol product would then be excreted by exhalation or undergo further metabolism in its corresponding alcohol and acid. The ethanol product would then be excreted by exhalation or undergo further metabolism in its corresponding alcohol and acid. The ethanol product would then be excreted by exhalation or undergo further metabolism in its corresponding alcohol and acid. The ethanol product would then be excreted by exhalation or undergo further metabolism in its corresponding alcohol and acid. The ethanol product would then be excreted by exhalation or undergo further metabolism in its corresponding alcohol and acid. The ethanol product would then be excreted by exhalation or undergo further metabolism in its corresponding alcohol and acid. The ethanol product would then be excreted by exhalation or undergo further metabolism in its corresponding alcohol and acid.
A 28-day dietary study of structurally related substance, ethyl acetoacetate (FEMA 2415), in male and female Sprague-Dawley rats resulted in a NOAEL of greater than a 1000 mg/kg bw/day (Cook et al., 1992). This NOAEL is 50,000,000 times the anticipated daily per capita intake of ethyl 3-methyl-2-oxopantoate from use as a flavor ingredient.

The Panel reviewed the GRAS application and supporting information regarding trans-tetradec-4-enal (CAS 115018-39-8) and concluded that the substance is GRAS (FEMA 4904) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of linear and branch-chain aliphatic, unsaturated, unconjugated alcohols, aldehydes, acids, and related esters (JECFA, 1999, 2007, 2012; SLR, M1). The Panel calculated the anticipated per capita intake (“eaters only”) of trans-tetradec-4-enal from use as a flavor ingredient to be 0.3 μg/person/day, which is below the threshold of toxicological concern for structural class I (1800 μg/person/day) (Munro et al., 1996). In an Ames assay for structural relative 2,6-dimethyl-5-heptenal (FEMA 2389), negative results were observed in S. typhimurium strains TA98, TA100, TA1535, and TA1537 in the presence and absence of S9. In an unscheduled DNA synthesis assay for the same substance, negative results were observed at up to 1 mg/ml in rat hepatocytes (Heck et al., 1989). The same substance yielded no increase in incidence of micronuclei formation in an in vivo mouse study (Witt et al., 1983). A 90-day toxicity study of structural relative 2,6-dimethyl-5-heptenal (FEMA 2389) in male and female Wistar rats resulted in a NOAEL of 37 mg/kg bw/day (Gaunt et al., 1983) which is 7,400,00 times the anticipated daily per capita intake of 2,6-dimethylhept-5-enyl formate from use as a flavor ingredient.

The Panel reviewed the GRAS application and supporting information regarding L-carnitine tartrate (CAS 36687-82-8) and concluded that the substance is GRAS (FEMA 4906) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of amino acids (JECFA, 2006, 2012; SLR, B3). The Panel calculated the anticipated per capita intake (“eaters only”) of L-carnitine tartrate from use as a flavor ingredient to be 1510 μg/person/day, which is above the threshold of toxicological concern for structural class III (90 μg/person/day) (Munro et al., 1996). This substance is naturally occurring in animal protein products and is endogenous to humans (Benvenga et al., 2001). However, since quantitative data was not available, a consumption ratio could not be calculated. The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data for FEMA GRAS evaluation. The Panel evaluated sensory data included within the application and found it satisfactory with regard to intended conditions of use for the flavoring ingredient (Harman and Hallagan, 2013). It is presumed that L-carnitine tartrate readily dissociates into L-carnitine and L-tartaric acid in the gastrointestinal tract. Any orally consumed L-carnitine that is not absorbed in the gastrointestinal tract passes to the lower intestine to undergo bacterial degradation yielding gamma-butyrobtetaine which is then eliminated in the feces (EFSA, 2003; Schmidbauer et al., 1998). In an Ames assay for L-carnitine tartrate in S. typhimurium strains TA98, TA100, TA1535, TA1537, and TA1538, negative results were observed in the presence and absence of S9 up to 5,000 μg/plate (IBR, 1991b). Based on these results, as well as the
The Panel reviewed the natural flavor complex GRAS application and supporting information regarding Corynebacterium glutamicum (C. glutamicum) corn syrup fermentation product and concluded that the substance is GRAS (FEMA 4907) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This material was evaluated within the context of the procedure for the FEMA GRAS evaluation of flavor ingredients produced through biotechnology processes (Cohen et al., 2015). The Panel calculated the anticipated per capita intake of C. glutamicum corn syrup fermentation product from use as a flavor ingredient to be 2588 µg/person/day, which is above the threshold of toxicological concern for structural class III (90 µg/person/day) (Munro et al., 1996). The Panel considered the identity description of the material to be adequate for FEMA GRAS evaluation. The Panel evaluated sensory data included within the application and found it satisfactory with regard to intended conditions of use for the flavoring ingredient (Cohen et al., 2018; Smith et al., 2005b). The metabolism of the major marker constituents, glutamic acid, salt, water, and other amino acids are normal components of the human diet and as such are expected to be digested and metabolized in a similar manner to other commonly consumed nutrients (Tafazoli et al., 2017). In an Ames assay for a 2:1 mixture of FEMA 4107 and this study conducted in S. typhimurium strains TA98, TA100, TA1535, and TA1537 and E. coli strain WP2 uvrA, negative results were observed in the presence and absence of S9 (Tafazoli et al., 2017). An HPRT assay for the same test substance conducted in V79 Chinese hamster lung (CHL) cells yielded negative results in the presence and absence of S9 (Tafazoli et al., 2017). Based on these results, as well as the structures of the principal constituents and the identity and arrangement of the functional groups therein, the Panel did not identify specific concerns related to the genotoxicity of C. stationis corn syrup fermentation product. In a 90-day toxicity study in male and female Wistar rats dietarily administered a 2:1 mixture of C. glutamicum corn syrup fermentation product and C. stationis corn syrup fermentation product resulted in a NOAEL of 166 µg/kg bw/day for C. stationis corn syrup fermentation product (Tafazoli et al., 2017) which is greater than 38,000 times the anticipated daily per capita intake of C. stationis corn syrup fermentation product from use as a flavoring ingredient.

The Panel reviewed the natural flavor complex GRAS application and supporting information regarding glucosyl steviol glycosides, 70-80% (CAS 57817-89-7) and concluded that the material is GRAS (FEMA 4909) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). (Smith et al., 2005a). The Panel calculated the anticipated per capita intake of C. stationis corn syrup fermentation product from use as a flavor ingredient to be 2588 µg/person/day, which is above the threshold of toxicological concern for structural class III (90 µg/person/day) (Munro et al., 1996). The Panel considered the identity description of the material to be adequate for FEMA GRAS evaluation. The Panel evaluated sensory data included within the application and found it satisfactory with regard to intended conditions of use for the flavoring ingredient (Cohen et al., 2018; Smith et al., 2005b). The metabolism of the major marker constituents, inosine monophosphate as well as other nucleotides, amino acids, minerals, water, sugars, and organic acids, are normal components of the human diet and as such are expected to be digested and metabolized in a similar manner to other commonly consumed nutrients (Tafazoli et al., 2017). In an Ames assay for a 2:1 mixture of FEMA 4107 and this study conducted in S. typhimurium strains TA98, TA100, TA1535, and TA1537 and E. coli strain WP2 uvrA, negative results were observed in the presence and absence of S9 (Tafazoli et al., 2017). An HPRT assay for the same test substance conducted in V79 Chinese hamster lung (CHL) cells yielded negative results in the presence and absence of S9 (Tafazoli et al., 2017). Based on these results, as well as the structures of the principal constituents and the identity and arrangement of the functional groups therein, the Panel did not identify specific concerns related to the genotoxicity of C. stationis corn syrup fermentation product. In a 90-day toxicity study in male and female Wistar rats dietarily administered a 2:1 mixture of C. glutamicum corn syrup fermentation product and C. stationis corn syrup fermentation product resulted in a NOAEL of 166 µg/kg bw/day for C. stationis corn syrup fermentation product (Tafazoli et al., 2017) which is greater than 38,000 times the anticipated daily per capita intake of C. stationis corn syrup fermentation product from use as a flavoring ingredient.

The Panel reviewed the natural flavor complex GRAS application and supporting information regarding Stevia rebaudiana leaves (Wood et al., 1955). The Panel considered the identity description of the material to be adequate for FEMA GRAS evaluation. The Panel evaluated sensory data included within the application and found it satisfactory with regard to intended conditions of use for the flavoring ingredient (Harman and Halligan, 2013). Metabolic data exist for representative members of each cogenetic group that would predict, at the intake levels proposed, metabolism by well-established detoxification pathways to innocuous products (Gardana et al., 2003; Geuns et al., 2003a; Geuns et al., 2003b; Koyama et al., 2003a; Koyama et al., 2003b; Nikiforov et al., 2013; Purkayastha et al., 2015; Purkayastha et al., 2015; Purkayastha et al., 2015; Purkayastha et al.,
The genotoxicity of the major marker constituents (steviol glycosides) has been thoroughly examined in a wide range of studies. While some positive results are reported in in vitro mutagenicity assays, in vivo studies do not provide evidence of genotoxic effects (Nakajima, 2000; Pezzuto et al., 1985, 1986; Rumelhard et al., 2016; Suttajit et al., 1993; Terai et al., 2002; Toyoda et al., 1997; Williams and Burdock, 2009). Based on the results for the various steviol glycosides, the Panel did not identify specific concerns related to the potential genotoxicity of glucosyl steviol glycosides 70-80%. In a 108-week carcinogenicity study for stevioside, no carcinogenic effects were observed (Toyoda et al., 1997). In a 2-year feeding study, male and female rats were administered the equivalent of 0, 50, 150, or 550 mg/kg bw/day of a stevia extract comprised of 74% stevioside and 16% rebaudioside A. The authors considered the NOAEL from this 2-year rat feeding study of a stevia extract to be equal to 550 mg/kg bw/day, or approximately 89.5 mg/kg bw/day of rebaudioside A (Yamada et al., 1985), which is greater than 4,100 times the anticipated daily per capita intake of this flavor ingredient. The anticipated daily per capita intake of glucosyl steviol glycosides 40% from use as a flavoring ingredient.

The Panel reviewed the natural flavor complex GRAS application and supporting information regarding stevia extract stevioside, 70% (CAS 91722-21-3) and concluded that the substance is GRAS (FEMA 4911) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated within the context of the procedure for the safety evaluation of natural flavor complexes (Cohen et al., 2018; Smith et al., 2005b). The Panel calculated the anticipated per capita intake (“eaters only”) of stevia extract stevioside, 70% from use as a flavor ingredient to be 1427 µg/person/day, which is above the threshold of toxicological concern for structural class III (90 µg/person/day) (Munro et al., 1996). The Panel considered the identity description of the material to be adequate for FEMA GRAS evaluation. The Panel evaluated sensory data included within the application and found it satisfactory with regard to intended conditions of use for the flavoring ingredient (Harman and Hallagan, 2013). Metabolic data exist for representative members of each congenic group that would predict, at the intake levels proposed, metabolism by well-established detoxication pathways to innocuous products (Gardana et al., 2003; Geuns et al., 2003a; Geuns et al., 2003b; Koyama et al., 2003a; Koyama et al., 2003b; Nikiforov et al., 2013; Purkayastha et al., 2015; Purkayastha et al., 2016; Purkayastha et al., 2014; Renwick and Tarka, 2008). The genotoxicity of the major marker constituents (steviol glycosides) has been thoroughly examined in a wide range of studies. While some positive results are reported in vitro mutagenicity assays, in vivo studies do not provide evidence of genotoxic effects (Nakajima, 2000; Pezzuto et al., 1985, 1986; Rumelhard et al., 2016; Suttajit et al., 1993; Terai et al., 2002; Toyoda et al., 1997; Williams and Burdock, 2009). Based on the results for the various steviol glycosides, the Panel did not identify specific concerns related to the potential genotoxicity of glucosyl steviol glycosides 40%. In a 108-week carcinogenicity study for stevioside, no carcinogenic effects were observed (Toyoda et al., 1997). In a 2-year feeding study, male and female rats were administered the equivalent of 0, 50, 150, or 550 mg/kg bw/day of a stevia extract comprised of 74% stevioside and 16% rebaudioside A. The authors considered the NOAEL from this 2-year rat feeding study of a stevia extract to be equal to 550 mg/kg bw/day, or approximately 89.5 mg/kg bw/day of rebaudioside A (Yamada et al., 1985), which is greater than 4,100 times the anticipated daily per capita intake of this flavor ingredient.
threshold of toxicological concern for structural class III (90 µg/person/day) (Munro et al., 1996). The Panel considered the identity description of the material to be adequate for FEMA GRAS evaluation. Based on metabolic data for a representative member of the principal congeneric group, it is presumed that the group would be metabolized by well-established pathways to yield innocuous products. An Ames assay conducted withhibiscus blossom extract in S. typhimurium strains TA98, TA100, TA1535, and TA1537 as well as in E. coli strain WP2 uvrA(pKM1010) was negative up to cytotoxic concentrations in the presence and absence of S9 using the plate incorporation and preincubation techniques (Leuschner, 2017). Based on these assays and the composition of the material therein, the Panel did not identify specific concerns related to the genotoxicity of hibiscus blossom extract. A 270-day study in which male and female Sprague-Dawley rats received hibiscus blossom extract by water resulted in a NOAEL of 200 mg/kg bw/day (Api et al., 2004; Lambert and Hopkins, 1996) which is 80,000 times the anticipated daily per capita intake of hibiscus blossom extract from use as a flavor ingredient.

The Panel reviewed the GRAS application and supporting information regarding 3,7-dimethyl-2-methyleneoct-6-en-1-ol (CAS 18478-46-1) and concluded that it is GRAS (FEMA 4913) (Smith et al., 2005a) for use as a flavor in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of linear and branched-chain aliphatic, unsaturated, unconjugated alcohols, aldehydes, acids, and related esters (JECEFA, 1999, 2006, 2012; SLR, M1). The Panel calculated the anticipated per capita intake (“eaters only”) of 3,7-dimethyl-2-methyleneoct-6-en-1-ol from use as a flavor ingredient to be 1 µg/person/day, which is below the threshold of toxicological concern for structural class II (540 µg/person/day) (Munro et al., 1996). This substance is known to naturally occur in lemon eucalyptus (Eucalyptus citridora) (Luis et al., 2017). However, because only qualitative data was available, a consumption ratio could not be calculated. In its evaluation the Panel noted that the major markers of identity are ≥93%, 3,7-dimethyl-2-methyleneoct-6-en-1-ol and ≥3% 2,3,7-trimethyl oct-6-en-1-ol (mixture of isomers) and considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. It is anticipated that 3,7-dimethyl-2-methyleneoct-6-en-1-ol will be reduced either enzymatically by GSH reductase (Waring, 1996) or thioltransferases (Wells et al., 1993), or chemically by exchange with GSH, thioredoxin, cysteine or other endogenous thiols to yield 3-methyl-2-butenyl thiol. This simple thiol is expected to undergo enzymatic oxidation to yield the corresponding sulfenic acid, sulfonic acid and ultimately, sulfonic acid. The sulfenic and sulfonic acids are water soluble and easily excreted. Alternatively, the thiol that is formed may react with glutathione and cysteine to form mixed disulfides that can then undergo reduction and oxidative desulfuration, or oxidation to sulfonic acid via the intermediate thiosulfinate and sulfonic acid (Dutton and Illing, 1972; Maiorino et al., 1989; McBain and Menn, 1969; Richardson et al., 1991). There are also several possible thiol-disulfide exchange reactions that may occur (Colt greave et al., 1989). bis-(3-Methyl-2-butenyl)disulfide did not increase the frequency of revertant colonies in S. typhimurium strains TA98, TA100, TA1535, and TA1537 as well as in E. coli strain WP2uvrA either in the presence or absence of S9 metabolic activation by the pre-incubation method (Komai, 2017a). In a mouse micronuclear assay, gavage administration of a 68:20:12 mixture containing the structurally related flavor ingredients, allyl disulfide (FEMA 2028), allyl sulfide (FEMA 2042), and diallyl trisulfide (FEMA 3265), did not increase the frequency of micronucleated polychromatic erythrocytes in bone marrow cells. This test mixture provided estimated doses of the structurally related substance, allyl disulfide (FEMA 2028), of 48 and 98 mg/kg bw/day (Marks et al., 1992). The structurally related substance, allyl propyl disulfide (FEMA 4073), did not increase the frequency of revertant colonies when tested up to 333 µg/plate in S. typhimurium strains TA97, TA98, TA100, TA102, TA1535, and TA1537 either in the presence or absence of S9 metabolic activation (Zeiger et al., 1988). In a separate experiment, both structural relatives, allyl propyl disulfide (FEMA 4073) and allyl disulfide (FEMA 2028) did not increase the frequency of revertant
concentrations up to 500 µg/plate in the absence and presence of S9 metabolic activation at did not increase the frequency of revertant colonies in the WP2uvrA, (5Z)-3,4-dimethyl-5-propylidene-2(5H)-furanone (FEMA 4868) did not increase the frequency of revertant colonies in the absence and presence of S9 metabolic activation at concentrations up to 500 µg/plate (Kawaguchi, 2016). Based on the results for the substance and structural relatives, as well as on the structure of the substance and the identity and arrangement of functional groups therein, the Panel did not identify a specific concern for genotoxic potential of (5Z)-3,4-dimethyl-5-propylidene-2(5H)-furanone when used as a flavoring ingredient.

The Panel reviewed the GRAS application and supporting information regarding 2-methyl-3-butene-2-thiol (CAS 124831-34-1) and concluded that it is GRAS (FEMA 4916) (Smith et al., 2005a) for use as a flavor in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of simple aliphatic and aromatic sulfides and thiols (JECFA, 2000, 2004, 2008, 2011; SLR, A8). The Panel calculated the anticipated per capita intake (“eaters only”) of 2-methyl-3-butene-2-thiol from use as a flavor ingredient to be 0.07 µg/person/day, which is below the threshold of toxicological concern for structural class I (1800 µg/person/day) (Munro et al., 1996). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. It is predicted that 2-methyl-3-butene-2-thiol will undergo oxidation of the thiol group resulting in the corresponding sulfenic, sulfonic, and sulfonic acids. Sulfenic acids are unstable and readily undergo further oxidation to sulfonic and sulfonic acids or combine with nucleophiles. The sulfonic acids are water soluble and easily excreted (Dutton and Illing, 1972; Klaunzig et al., 1992; Maiorino et al., 1989; McBain and Menn, 1969; Renwick, 1996; Richardson et al., 1991). Alternatively, the thiol may react with glutathione and cysteine to form mixed disulfides that can then undergo reduction and oxidative desulfuration, or oxidation to sulfonic acid via the intermediate thiosulfinate and sulfonic acids. 2-Methyl-3-butene-2-thiol is also anticipated to undergo S-methylation in mammals to produce the corresponding methyl thioether that can be successively oxidized to the corresponding sulfioxide and sulfone (Shaw and Blagbrough, 1989; Tateishi et al., 1978; Tateishi and Tomisawa, 1989). In an Ames assay in S. typhimurium strains TA98, TA100, TA1535, TA1537 and E. coli strain WP2uvrA, (5Z)-3,4-dimethyl-5-propylidene-2(5H)-furanone did not increase the frequency of revertant colonies in the absence and presence of S9 metabolic activation (Sato, 2017). Based on these results, as well as on the structure and the identity and arrangement of functional groups therein, the Panel did not identify a specific concern for genotoxic potential of 2-methyl-3-butene-2-thiol when used as a flavoring ingredient.

In a 14-day dietary administration study in male and female rats with the structural relative prenylthiol (FEMA 3896), an average daily intake of 12.8 mg/kg bw/day for both sexes resulted in a significant reduction in food consumption for males, but this is presumed to be related to palatability of the test diet since the change in food consumption was not accompanied by a significant difference in body weight gain between test and control groups. Gross necropsy and histopathological examination of kidney and liver tissues revealed effects related to the test article. Relative kidney and liver weights showed no significant differences between test and control groups (Wnrowski, 1997). In a 90-day study in albino weanling rats, dietary addition of the structural relative...
2,3-butanedithiol (FEMA 3477) at a dose of 0.703 mg/kg bw/day resulted in no hematological, biochemical and urinary deviations from normal ranges of tested parameter or any unusual microscopic pathological observations (Morgareidge, 1974). In an OECD 408 compliant 90-day in male and female Sprague-Dawley rats, gavage administration of the structural relative 4-mercapto-4-methyl-2-pentanone (FEMA 3997) at doses of 13, 20, and 26 mg/kg/day resulted in a NOAEL of 26 mg/kg bw/day (Bauter, 2017). This is 22,000,000 times the anticipated daily per capita intake of 2-methyl-3-buten-2-thiol from use as a flavor ingredient.

The Panel reviewed the GRAS application and supporting information regarding (Z)-9-dodecenoic acid (CAS 22032-47-9) and concluded that it is GRAS (FEMA 4917) (Smith et al., 2005a) for use in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of linear and branched-chain aliphatic, unsaturated, unconjugated alcohols, aldehydes, acids, and related esters (JECFA, 1999, 2006, 2012; SLR, M1). The Panel calculated the anticipated per capita intake ("eaters only") of (Z)-9-dodecenoic acid from use as a flavor ingredient to be 0.1 µg/person/day, which is below the threshold of toxicological concern for structural class I (1800 µg/person/day) (Munro et al., 1996). It is anticipated that (Z)-9-dodecenoic acid will form micelle aggregates, esterify with glycerol in chylomicrons and low-density lipoproteins, and then be transported via the lymphatic system for absorption (Borgström, 1974). Alternatively, (Z)-9-dodecenoic acid could undergo β-oxidative cleavage and complete metabolism to carbon dioxide in the fatty acid pathway and the citric acid cycle (Gibson et al., 1982; Masoro, 1977; Schulz, 1983). In an Ames assay conducted in S. typhimurium strains TA98 and TA100, (Z)-9-dodecenoic acid did not increase the frequency of revertant colonies in the absence and presence of S9 metabolic activation. In an Ames assay in S. typhimurium strains TA98, TA100, TA102, TA1535, and TA1537, the structural relative 10-undecenal (FEMA 3095) did not increase the frequency of revertant colonies in the absence and presence of S9 metabolic activation using both the plate incorporation and pre-incubation methodologies (Bhatia et al., 2010; Sokolowski, 2007). In an in vivo micronucleus assay in male and female NMRI mice, gavage administration at doses up to 2000 mg/kg bw/day of the structural relative 10-undecenal (FEMA 3095) produced no statistically significant increases in the frequency of micronuclei (Bhatia et al., 2010; Honarvar, 2007). Based on these results, the very low intake of the substance and the structure and the identity and arrangement of functional groups therein, the Panel did not identify a specific concern for genotoxic potential of 1-ethyl-(Z)-9-dodecenoic acid when used as a flavoring ingredient. A 90-day dietary administration study for the structurally related substance, 10-undecenal (FEMA 3095), was conducted in male and female Sprague-Dawley rats related to a NOAEL of 14.3 mg/kg bw/day due to no toxicologically significant clinical observations or macroscopic abnormalities (Liwska, 2012; Tsang, 2018). This is greater than 8,500,000 times the anticipated daily per capita intake of (Z)-9-dodecenoic acid from use as a flavor ingredient.

The Panel reviewed the GRAS application and supporting information regarding tridec-5-enal (CAS 68820-38-2) and concluded that it is GRAS (FEMA 4918) (Smith et al., 2005) for use as a flavor in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of linear and branched-chain aliphatic, unsaturated, unconjugated alcohols, aldehydes, acids, and related esters (JECFA, 1999, 2006; SLR, M1). The Panel calculated the anticipated per capita intake ("eaters only") of tridec-5-enal from use as a flavor ingredient was calculated to be 0.3 µg/person/day, which is below the threshold of toxicological concern for structural class I (1800 µg/person/day) (Munro et al., 1996). In its evaluation of tridec-5-enal, the Panel noted that the major markers of identity are >90% cis-tridec-5-enal and >5% trans-tridec-5-enal and considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. It is predicted that tridec-5-enal will be oxidized to the corresponding unsaturated carboxylic acid before proceeding into the β-oxidation cycle (Feldman & Weiner, 1972; Eckfeldt & Yonetani, 1982; Nakayasu et al., 1978; Beedham, 1988). The cis-carboxylic acid intermediate will undergo a single β-oxidation cycle and the corresponding cis Δ-3 double bond of the C11 intermediate will then be converted to the corresponding trans Δ-2 double bond (via enoyl CoA isomerase). It then proceeds into the next β-oxidation cycle. Acetyl CoA units will continue to be cycled off in β-oxidation until the final cleavage, which yields acetyl CoA and propionyl CoA. Acetyl CoA enters the citric acid cycle directly, while propionyl CoA is transformed into succinyl CoA that then enters the citric acid cycle. Based on this, it is therefore predicted that 5-tridec-ene will undergo complete metabolism to innocuous products (CO2 and water) (Nelson and Cox, 2008). In an Ames assay in S. typhimurium strains TA98, TA100, TA102, TA1535, and TA1537, the structurally related substance, 10-undecenal (FEMA 3095), did not increase the frequency of revertant colonies in the absence and presence of S9 metabolic activation (Bhatia et al., 2010; Sokolowski, 2007). In an in vivo micronucleus assay in male and female NMRI mice, gavage administration at doses up to 2000 mg/kg bw/d of the structurally related substance, 10-undecenal (FEMA 3095), produced no statistically significant increases in the frequency of micronuclei (Bhatia et al., 2010; Honarvar, 2007). Based on these results, as well as the structure of the substance and the identity and arrangement of the functional groups therein, the Panel did not identify a specific concern for the genotoxic potential of tridec-5-enal. A 90-day dietary administration study for the structurally related substance, 10-undecenal (FEMA 3095), was conducted in male and female Sprague-Dawley rats resulted in a NOAEL of 14.3 mg/kg bw/day, reporting no toxicologically significant clinical observations or macroscopic abnormalities (Liwska, 2012; Tsang, 2018). This is 2,860,000 times the anticipated daily per capita intake of 5-tridec-ene from use as a flavor ingredient.

The Panel reviewed the GRAS application and supporting information regarding refined soybean oil extract (CAS 8001-22-7) and concluded that it is GRAS (FEMA 4919) (Smith et al., 2005a) for use as a flavor in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated within the context of the procedure for the safety evaluation of natural flavor complexes (Cohen et al., 2018; Smith et al., 2005b). The Panel calculated the anticipated per capita intake ("eaters only") of refined soybean oil extract from use as a flavor ingredient was calculated to be 0.3 µg/person/day, which is below the threshold of toxicological concern for structural
soybean oil extract, these results provided sufficient evidence the test materials relative to the composition of refined soybean oil extract, will be poorly absorbed (>5% of dietary concentrations) in the gastrointestinal tract. Excess dietary phytosterols are excreted unchanged in the feces (Maki et al., 2001; Miettinen et al., 1990; Ostlund, 2002; Rozner and Garti, 2006; Salen et al., 1985; Sanders et al., 2000). In an Ames assay in \(S. \text{typhimurium} \) strains TA1535, TA1537, TA98, TA100 a phytosterol mixture (\(\beta \)-sitosterol, 45.5-51.0%; campesterol, 26.7-28.1%; and stigmasterol, 17.7-18.7%) did not increase the frequency of revertant colonies in the absence and presence of S9 metabolic activation (Wolfreys and Hepburn, 2002). Either the phytosterol mixture nor the phytosterol ester mixture induced chromosomal aberrations in vitro in human peripheral blood lymphocytes in either the presence or absence of S9 metabolic activation (Evans and O'Riordan, 1975 as cited in Wolfreys and Hepburn, 2002). The phytosterol ester mixture was negative in a mouse lymphoma forward mutation assay in \(L5178Y \) tk +/- mouse lymphoma cells in the absence and presence of S9 metabolic activation (Wolfreys and Hepburn, 2002). No clastogenic potential was observed in the bone marrow of male Crl:HanWist (Glx:BRL) rats when the phytosterol ester mixture was administered via oral gavage at doses up to 2000 mg/kg bw (Wolfreys and Hepburn, 2002). The Panel concluded that despite the different composition of the test materials relative to the composition of refined soybean oil extract, these results provided sufficient evidence to conclude that there was a lack of genotoxic potential for refined soybean oil extract. The phytosterol ester (PE) mixture, 49.4% sitosterol, 27.9% campesterol, 18.5% stigmasterol, and others was evaluated in a two-generation daily dietary administration reproductive study in rats. Administration of up to 8.1% w/w phytosterol esters, equivalent to a dose of 2.5-9.1 g PE/kg bw/day dependent on the period of the study, in the diet over two generations was found to have no effects on reproduction of parental F0 and F1 generation Wistar rats nor the development of the F1 and F2 pups or in the sexual maturation of the F1 weanlings. Therefore, 8.15% w/w phytosterol esters, equivalent to 2.5 g PE/kg bw/day at the most conservative period of the study, the NOAEL following daily administration for PE for two successive generations (Waalkens-Berendsen et al., 1999). A 13-week oral gavage administration study in male and female Sprague-Dawley rats with a mixture of plant sterol esters, isolated from soybean and esterified with oleic acid to increase solubility, was conducted at doses of 1000, 3000 and 9000 mg/kg bw/day. The composition of the test material was 49.4% sitosterol, 27.9% campesterol, 18.5% stigmasterol, and other minor components. Suppressed body weight gains in both sexes and cardiomyopathy with mononuclear cell infiltration were observed in high dose males. No other adverse effects were noted and a NOAEL of 3000 mg/kg bw/day was determined for both sexes (Kim et al., 2002). This is 600,000,000 times the daily per capita intake of refined soybean oil extract from use as a flavor ingredient. The Panel reviewed the GRAS application and supporting information regarding 1-ethyl-2-(1-pyrrolylmethyl)pyrrole (CAS 2204262-51-9) and concluded that it is GRAS (FEMA 4921) (Smith et al., 2005a) for use as a flavor in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of pyridine, pyrrole and quinoline derivatives (JECA, 2006, 2012; SLR, D3). The Panel calculated the anticipated per capita intake (“eaters only”) of 1-ethyl-2-(1-pyrrolylmethyl)pyrrole from use as a flavor ingredient to be 0.0001 \(\mu \)g/person/day, which is below the threshold of toxicological concern for structural class III (90 \(\mu \)g/person/day) (Munro et al., 1996). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. 1-Ethyl-2-(1-pyrrolylmethyl)pyrrole is predicted to be rapidly absorbed from the gastrointestinal tract and oxidized to polar metabolites that would be eliminated primarily in the urine. 1-Ethyl-2-(1-pyrrolylmethyl)pyrrole may also undergo cytochrome P450 (CYP450)-induced side chain oxidation to yield the corresponding alcohol that is expected to be excreted as either the glucuronic acid or sulfate conjugate (Gillam et al., 2000; Ruanvyttikkarn et al., 1992; Thornton-Manning et al., 1993). 1-Ethyl-2-(1-pyrrolylmethyl)pyrrole did not increase reverse mutations in \(S. \text{typhimurium} \) strains TA98, TA100, TA1535, and TA1537 and \(E. \text{coli} \) strain WP2uvrA up to 500 \(\mu \)g/plate either in the presence or absence of S9 metabolic activation (Komai, 2017c). The structural related 1H-pyrrole-2-carboxaldehyde did not increase reverse mutations in \(S. \text{typhimurium} \) strains TA98 or TA100 either in the presence or absence of S9 metabolic activation when tested up to 9510 \(\mu \)g/plate (Lee et al., 1994). Based on these results and also based on the structure and the identity and arrangement of functional groups therein, the Panel did not identify a specific concern for genotoxic potential of 1-ethyl-2-(1-pyrrolylmethyl)pyrrole when used as a flavoring ingredient. The Panel reviewed the GRAS application and supporting information regarding rebaudioside D 95% (CAS 63279-13-0) and concluded that it is GRAS (FEMA 4921) (Smith et al., 2005a) for use as a flavor in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated within the context of the procedure for the safety evaluation of natural flavor complexes (Cohen et al., 2018; Smith et al., 2005b). This material was evaluated within the context of the procedure for the FEMA GRAS evaluation of flavor ingredients produced through biotechnology processes (Cohen et al., 2015). The Panel calculated the anticipated per capita intake (“eaters only”) of rebaudioside D 95% from use as a flavor ingredient to be 111 \(\mu \)g/person/day, which is above the threshold of toxicological concern for structural class III (90 \(\mu \)g/person/day) (Munro et al., 1996). This substance is reported to occur in \(S. \text{via} \) rebaudiana leaves (Chaturvedula et al., 2011; Wood et al., 1955). The Panel considered the identity description of the material to be adequate for FEMA GRAS evaluation. The Panel evaluated sensory data included within the application and found it satisfactory with regard to intended conditions of use for the flavoring ingredient (Harman and Hallagan, 2013). Metabolic data exist for representative members of each congeneric group that would predict, at the intake levels proposed, metabolism by well-established detoxication
complexes (Cohen et al., 2018; Smith et al., 2005b). This procedure for the safety evaluation of natural flavoring ingredient (Harman and Hallagan, 2013). Metabolic pathways to innocuous products (Gardana et al., 2003; Geuns et al., 2003a; Geuns et al., 2003b; Koyama et al., 2003a; Koyama et al., 2003b; Nikiforov et al., 2013; Purkayastha et al., 2015; Purkayastha et al., 2016; Purkayastha et al., 2014; Renwick and Tarka, 2008). The genotoxicity of the major marker constituents (steviol glycosides) has been thoroughly examined in a wide range of studies. While some positive results are reported in in vitro mutagenicity assays, in vivo studies do not provide evidence of genotoxic effects (Nakajima, 2000b; Pezzuto et al., 1985; Pezzuto et al., 1986; Rumelhard et al., 2016; Suttajit et al., 1993; Terai et al., 2002; Toyoda et al., 1997; Williams and Burdock, 2009). Based on the results for the various steviol glycosides, the Panel did not identify specific concerns related to the potential genotoxicity of stevia extract stevioside, 70%. In a 108-week carcinogenicity study for stevioside, no carcinogenic effects were observed (Toyoda et al., 1997). In a 2-year feeding study, male and female rats were administered the equivalent of 0, 50, 150, or 550 mg/kg bw/day of a stevia extract comprised of 74% stevioside and 16% rebaudioside A. The authors considered the NOAEL from this 2-year rat feeding study of a stevia extract to be equal to 550 mg/kg bw/day, or approximately 89.5 mg/kg bw/day of rebaudioside A (Yamada et al., 1985). This is greater than 48,000 times the anticipated daily per capita intake of rebaudioside M 95% from use as a flavoring ingredient.

The Panel reviewed the safety evaluation of the GRAS application for use as a flavor in the food categories and at the use levels specified in the GRAS applications (see Table 2). This material was evaluated within the context of the procedure for the safety evaluation of natural flavor complexes (Cohen et al., 2018; Smith et al., 2005b). This material was evaluated within the context of the procedure for the FEMA GRAS evaluation of flavor ingredients produced through biotechnology processes (Cohen et al., 2015). The Panel calculated the anticipated per capita intake ("eaters only") of Rebaudioside M 95% from use as a flavor ingredient to be 111 µg/person/day, which is above the threshold of toxicological concern for structural class III (90 µg/person/day) (Murko et al., 1996). This substance is reported to occur in Stevia rebaudiana leaves (Ohta et al., 2010). The Panel considered the identity description of the material to be adequate for FEMA GRAS evaluation. The Panel evaluated sensory data included within the application and found it satisfactory with regard to intended conditions of use for the flavoring ingredient (Harman and Hallagan, 2013). Metabolic data exist for representative members of each congeneric group that would predict, at the intake levels proposed, metabolism by well-established detoxication pathways to innocuous products (Gardana et al., 2003; Geuns et al., 2003a; Geuns et al., 2003b; Koyama et al., 2003a; Koyama et al., 2003b; Nikiforov et al., 2013; Purkayastha et al., 2015; Purkayastha et al., 2016; Purkayastha et al., 2014; Renwick and Tarka, 2008). The genotoxicity of the major marker constituents (steviol glycosides) has been thoroughly examined in a wide range of studies. While some positive results are reported in in vitro mutagenicity assays, in vivo studies do not provide evidence of genotoxic effects (Nakajima, 2000b; Pezzuto et al., 1985; Pezzuto et al., 1986; Rumelhard et al., 2016; Suttajit et al., 1993; Terai et al., 2002; Toyoda et al., 1997; Williams and Burdock, 2009). Based on the results for the various steviol glycosides, the Panel did not identify specific concerns related to the potential genotoxicity of stevia extract stevioside, 70%. In a 108-week carcinogenicity study for stevioside, no carcinogenic effects were observed (Toyoda et al., 1997). In a 2-year feeding study, male and female rats were administered the equivalent of 0, 50, 150, or 550 mg/kg bw/day of a stevia extract comprised of 74% stevioside and 16% rebaudioside A. The authors considered the NOAEL from this 2-year rat feeding study of a stevia extract to be equal to 550 mg/kg bw/day, or approximately 89.5 mg/kg bw/day of rebaudioside A (Yamada et al., 1985). This is greater than 48,000 times the anticipated daily per capita intake of rebaudioside M 95% from use as a flavoring ingredient.

The Panel reviewed the natural flavor complex GRAS applications and supporting information regarding Buchu leaves extract (Barosma betulina Bartl. et Wendl., B. crenulata (L.) Hook, B. serratifolia Willd.), Peppermint oil terpenelless (Mentha piperita L.) and Spearmint oil terpenelless (Mentha spicata L.) and concluded that they are GRAS for use as flavoring ingredients in the food categories and at the use levels specified in the GRAS applications (FEMA 4923-4925, respectively) (see Table 2). These materials were evaluated within the context of the revised procedure for the safety evaluation of natural flavor complexes (Smith et al., 2005b; Cohen et al., 2018). These natural flavor complexes are derived from commonly consumed herbs. The Panel considered the identity descriptions of each material to be adequate for FEMA GRAS evaluation. These natural flavor complexes were evaluated using a rigorous procedure that considers the chemical composition, anticipated per capita intake, metabolic fate and toxicity of the identified constituents and potential toxicity and genotoxicity of unidentified constituents (Cohen et al., 2020).

The Panel reviewed the GRAS application and supporting information regarding (Z)-8-pentadecenal (CAS 65398-36-9) and concluded that it is GRAS (FEMA 4926) (Smith et al., 2005a) for use as a flavor in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of linear and branched-chain aliphatic, unsaturated, unconjugated alcohols, aldehydes, acids, and related esters (JECFA, 1999, 2006, 2012; SLR, M1). The Panel calculated the anticipated per capita intake ("eaters only") of (Z)-8-pentadecenal from use as a flavor ingredient to be 0.001 µg/person/day, which is above the threshold of toxicological concern for structural class I (1800 µg/person/day) (Murko et al., 1996). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. (Z)-8-Pentadecenal is anticipated to be efficiently oxidized to the corresponding unsaturated carboxylic acid before proceeding into the beta-oxidation cycle for complete metabolism to innocuous products (Beedham, 1988; Eckfeldt and Yonetani, 1982; Feldman and Weiner, 1972; Nakayasu et al., 1978; Nelson and Cox, 2008). (Z)-8-Pentadecenal was negative for mutagenicity in an Ames assay in S. typhimurium strains TA100, TA1535, TA98, TA1537 and E. coli strain WP2uvrA in either the presence or absence of S9 metabolic activation by the pre-incubation method up to 5000 µg/plate (Komai, 2018a). Based on the results for the substance, as well as on
the structure of the substance and the identity and arrangement of functional groups therein, the Panel did not identify any specific concerns related to the genotoxic potential of (Z)-8-pentadecenal. In a 98-day study in male and female SPF-derived CFE weaning rats, the structurally related substance, cis-3-hexen-1-ol (FEMA 2563), was provided at 310, 1250 and 5000 ppm in drinking water. Test article-related changes that were observed were increased relative kidney and adrenal weights in males administered 5000 ppm. A NOAEL of 1250 ppm, or approximately 120-150 mg/kg bw/day, was assigned (Gaunt et al., 1969). In a 90-day dietary administration study in male and female Sprague-Dawley rats, the structurally related substance, 10-undecenal (FEMA 3095), was administered at 14.3, 138.6, 382.3, and 1136 mg/kg bw/day. No toxicologically significant clinical observations or macroscopic abnormalities were detected. Histopathology analysis showed possible stomach irritation associated with the route of administration. Minimal centrilobular hepatocellular hypertrophy was observed in males at 138.6, 382.3, and 1136 mg/kg bw/day, but this was not accompanied by degenerative or inflammatory changes. The NOAEL was identified to be 14.3 mg/kg bw/day (Liwska and Watson, 2012; Tsang et al., 2018). This is greater than 214,000 times the anticipated daily per capita intake of 4,7-decadinal from use as a flavor ingredient.

The Panel reviewed the GRAS application and supporting information for 4,7-decadinal (CAS 934534-30-2) and concluded that it is GRAS (FEMA 4927) (Smith et al., 2005a) for use as a flavor in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of linear and branched-chain aliphatic, unsaturated, unconjugated alcohols, aldehydes, acids, and related esters (JECFA, 1999, 2006, 2012; SLR, M1). The Panel calculated the anticipated per capita intake ("eaters only") of 4,7-decadinal from use as a flavor ingredient to be 4 µg/person/day, which is below the threshold of toxicological concern for structural class I (1800 µg/person/day) (Munro et al., 1996). The substance has been reported to naturally occur in Acorus calamus L. oil (Calamus oil) (Nijssen, 2019). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting structural data provided for FEMA GRAS evaluation. 4,7-Decadinal is anticipated to be efficiently oxidized to the corresponding unsaturated carboxylic acid before proceeding into the beta-oxidation cycle for complete metabolism to innocuous products (Feldman and Weiner, 1972; Eckfeldt and Yonetani, 1982; Nakayasu et al., 1978; Beecham, 1988; Nelson and Cox, 2008). An Ames assay was conducted for 4,7-decadinal in S. typhimurium strains TA1535, TA1537, TA98, TA100 and TA102, both with and without S9 metabolic activation using both the plate incorporation and pre-incubation methodologies. No substantial increase in revertant colony numbers of any of the five tested strains was observed at any dose level either in the presence or absence of S9 metabolic activation (Sokolowski, 2009).). Based on the results for the substance, as well as on the structure of the structural group and the identity and arrangement of functional groups therein, the Panel did not identify any specific concerns related to the genotoxic potential of 4,7-decadinal. In a 98-day study in male and female SPF-derived CFE weaning rats, the structurally related substance, cis-3-hexen-1-ol (FEMA 2563), was administered at doses of 310, 1250 and 5000 ppm via drinking water. The only non-transitory test article-related changes that were observed were increased relative kidney and adrenal weights in males administered 5000 ppm. A NOAEL of 1250 ppm, or approximately 120-150 mg/kg bw/day, was assigned (Gaunt et al., 1969). In a 90-day dietary administration study in male and female Sprague-Dawley rats, the structurally related substance, 2-methylthiophene (FEMA 3095), was administered at 14.3, 138.6, 382.3, and 1136 mg/kg bw/day. No toxicologically significant clinical observations were detected. No macroscopic abnormalities were detected. Histopathology examination showed possible stomach irritation associated with the route of administration. Minimal centrilobular hepatocellular hypertrophy was observed in males at 138.6, 382.3, and 1136 mg/kg bw/day, but this was not accompanied by degenerative or inflammatory changes. The NOAEL was concluded to be 14.3 mg/kg bw/day (Liwska and Watson, 2012; Tsang et al., 2018). This is greater than 214,000 times the anticipated daily per capita intake of 4,7-decadinal from use as a flavor ingredient.
changes were not considered to be biologically relevant. Additionally, some high dose females were observed to have increased relative kidney weight, but the change was not considered to be biologically relevant since no accompanying histological effects were identified. The NOAEL of 33 and 39 mg/kg bw/day were identified for male and female rats, respectively (Bauter, 2013). The NOAEL of 33 mg/kg bw/day was greater than 198,000,000 times the anticipated daily per capita intake of 2-methylthiophene from use as a flavor ingredient.

The Panel reviewed the GRAS application and supporting information regarding 4-methylidene-2-(2-methylprop-1-enyl)oxane (CAS 60857-05-8) and concluded that it is GRAS (FEMA 4929) (Smith et al., 2005a) for use as a flavor in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of aliphatic and aromatic ethers (JECFA, 2004, 2012; SLR, C22, D12). The Panel calculated the anticipated per capita intake (“eaters only”) of 4-methylidene-2-(2-methylprop-1-enyl)oxane from use as a flavor ingredient to be 0.03 µg/person/day, which is below the threshold of toxicological concern for structural class III (90 µg/person/day) (Munro et al., 1996). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. 4-Methylidene-2-(2-methylprop-1-enyl)oxane is predicted to be hydroxylated on the methyl groups of the isopropenyl moiety. The corresponding metabolite will be excreted either unchanged or after conjugation (Smith et al., 2018). In an Ames assay in S. typhimurium strains TA1535, TA1537, TA98, TA100, and E. coli WP2 uvrA, 4-methylidene-2-(2-methylprop-1-enyl)oxane did not increase the frequency of revertant colonies either in the absence or presence of S9 metabolic activation (Komai, 2018c). In an Ames assay in S. typhimurium strains TA1535, TA1537, TA98, TA100, and TA102 the structurally related substance, tetrahydro-4-methyl-2-(2-methylpropen-1-yl)pyran (FEMA 3236), did not increase the frequency of revertant mutations in the absence or presence of S9 metabolic activation (Verspsek-Rip, 2002). In two separate additional Ames assays in S. typhimurium strains TA1535, TA97a, TA98, TA100 and TA102 the same structural relative did not increase the frequency of revertant colonies in the absence or presence of S9 metabolic activation (Scheerbaum, 2001). In in vitro micronucleus tests in Chinese hamster V79 cells the same structural relative did not induce statistically significant increases in the frequency of micronuclei in either the absence or presence of S9 metabolic activation in any treatment arm or treatment concentration tested (Wollny, 2012). In two OECD 474 compliant in vivo micronucleus assays, structurally related substance, tetrahydro-4-methyl-2-(2-methylpropen-1-yl)pyran (FEMA 3236), was administered by gavage to male and female Crl:NMRI mice at concentrations of 250, 500 or 1000 mg/kg bw. In the first experiment, high variability in micronucleated polychromatic erythrocyte incidence was noted, yielding a weak, dose-related increase in the number of polychromatocytes relative to controls. The authors considered the increase not to be biologically relevant. In the second experiment, a weak, dose-related increase in micronucleated polychromatic erythrocyte incidence was observed. The number of micronucleated polychromatic erythrocytes in the high dose group slightly exceeded the vehicle and negative control values but was considered not to be biologically relevant by the authors as they were not statistically significant (Schulz, 2012). Based on the results for the substance and the structurally related substance, and also based on the structure of the substance and the identity and arrangement of functional groups therein, the Panel did not identify a specific concern for the genotoxic potential of 4-methylidene-2-(2-methylprop-1-enyl)oxane.
conducted on the test substance and that the positive results observed in the in vitro micronucleus assay were not confirmed in the in vivo study, the Panel concluded that it did not identify a specific concern for the genotoxic potential of 4-isopropoxyacetaldehyde. In a 90-day dietary study in rats, the structurally related substance, o-methoxyacetaldehyde (FEMA 3181), was administered at average doses of 47.1 mg/kg bw/day and 52.2 mg/kg bw/day for males and females, respectively. There were no biologically relevant findings in the study (Posternak et al., 1969). In a 90-day dietary toxicity study, structural relative, o-methoxyacetaldehyde (FEMA 3181) was administered at concentrations of 47.1 and 52.2 mg/kg bw/day in the feed. There were no significant differences in growth, body weights, food intake, hematology or clinical chemistry measurements. Organ weights or pathology observations between test and control groups. The NOAEL of 47.1 mg/kg bw/day is greater than 188,000 time the anticipated daily per capita intake of 4-isopropoxyacetaldehyde from use as a flavor ingredient.

The Panel reviewed the natural flavor complex GRAS application and supporting information regarding glucosylated steviol glycosides, 90% (CAS 57817-89-7) and concluded that the substance is GRAS (FEMA 4931) (Smith et al., 2005a) for use as a flavor ingredient in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated within the context of the procedure for the safety evaluation of natural flavor complexes (Cohen et al., 2018; Smith et al., 2005b). The Panel calculated the anticipated per capita intake ("eaters only") of glucosylated steviol glycosides, 90% from use as a flavor ingredient to be 713 µg/person/day, which is above the threshold of toxicological concern for structural class III (90 µg/person/day) (Cramer et al., 1984; Munro et al., 1996). The Panel considered the identity description of the material to be adequate for FEMA GRAS evaluation. The Panel concluded that the principal components of Chaenomeles speciosa leaf extract were carbohydrate in nature, and that these were either endogenous or would be readily metabolized in the body to yield innocuous products that would be excreted or incorporated into the biosynthesis of other biomolecules. The Panel found the metabolism data adequate for the FEMA GRAS evaluation. In an Ames assay in S. typhimurium strains TA98, TA100, TA1535, and TA1537 and E. coli strain WP2 uvrA, Chaenomeles speciosa leaf extract did not increase the frequency of revertant colonies in the presence or absence of S9 in an OECD guideline 471 compliant Ames assay using both the plate incorporation and pre-incubation methodologies (Roy, 2019). In an OECD guideline 487 compliant in vitro micronucleus assay, no significant increase in micronuclei induction was observed when Chaenomeles speciosa leaf extract was incubated with human lymphocytes at 156.25-5,000 µg/ml for 4 hours in the presence and absence of S9 as well as for 24 hours with the absence of S9 (Vashi, 2019). Based on these results, the Panel did not identify a specific concern for the genotoxic potential of Chaenomeles speciosa leaf extract.

The Panel reviewed the GRAS application and supporting information regarding Eriobotrya japonica leaves extract (CAS 91770-19-3) and concluded that it is GRAS (FEMA 4933) (Smith et al., 2005a) for use as a flavor in the food categories and at the use levels specified in the GRAS application (see Table 2). This material was evaluated within the context of the procedure for the safety evaluation of natural flavor complexes (Cohen et al., 2018; Smith et al., 2005b). The Panel calculated the anticipated per capita intake ("eaters only") of Eriobotrya japonica leaves extract from use as a flavor ingredient was calculated to be 71 µg/person/day, which is below the threshold of toxicological concern for structural class III (90 µg/person/day) (Cramer et al., 1984; Munro et al., 1996). The Panel considered the identity description of the material to be adequate for FEMA GRAS evaluation. The Panel concluded that the principal components of Eriobotrya japonica leaves extract would be readily metabolized in the body to yield innocuous products that would be excreted or incorporated into the biosynthesis of other biomolecules. The Panel found the metabolism data adequate for the FEMA GRAS evaluation. No increases in reverse mutations were observed when 5 concentrations of Eriobotrya japonica leaves
extract ranging from 15.9 to 5000 µg/plate were tested in S. typhimurium strains TA98, TA100, TA97a and TA1535 and E. coli WP2uvrA pKM101 in the absence and presence of S9 (Swartz, 2018). In an in vivo micronucleus assay in male and female Balb/c mice, gavage administration of doses up to 10,000 mg/kg bw/day of an ethanolic Eriobotrya japonica leaves extract produced no statistically significant increases in the frequency of micronuclei (Jin and Dong, 2017). Based on these results, the Panel did not identify a specific concern for the genotoxic potential of Eriobotrya japonica leaves extract. In a 28-day toxicity study in male and female ICR mice were administered an Eriobotrya japonica leaves extract analogous to the test material at doses of 150, 300, or 600 mg/kg bw/day via gavage administration. The highest dose resulted in a statistically significant reduction in body weight in the high dose males. High dose males and females showed statistically significant changes in several clinical biochemistry parameters, but without corresponding histopathology. The author of the study determined that the changes in clinical biochemistry parameters were not considered biologically relevant. Based on weight reductions and biochemical changes at the highest dose, the Panel determined a NOAEL of 300 mg/kg bw/day. This is greater than 1,280,000 times the daily per capita intake of Eriobotrya japonica leaves extract from use as a flavor ingredient (Li et al., 2017).

The Panel reviewed the GRAS application and supporting information regarding sodium gluconate (CAS 527-07-1) and concluded that it is GRAS (FEMA 4934) (Smith et al., 2005a) for use as a flavor in the food categories and at the use levels specified in the GRAS application (see Table 2). This material was evaluated within the context of the procedure for the FEMA GRAS evaluation of flavor ingredients produced through biotechnology processes (Cohen et al., 2015). This substance was evaluated individually within the context of the chemical group of aliphatic poly-hydroxy compounds and derivatives (JECFA, 2001; SLR, B1F). The Panel calculated the anticipated per capita intake (“eaters only”) of sodium gluconate from use as a flavor ingredient to be 1070 µg/person/day, which is below the threshold of toxicological concern for structural class I (1800 µg/person/day) (Munro et al., 1996). The substance occurs naturally in honey (Ramachandran et al., 2006). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. The Panel evaluated sensory use levels included within the application and found it satisfactory with regard to intended conditions of use for the flavoring ingredient (Harman and Hallagan, 2013). Sodium gluconate is predicted to be excreted unchanged in the urine and any sodium gluconate absorbed in the gastrointestinal tract is expected to be metabolized to innocuous products. d-Gluconic acid is an endogenously occurring metabolite of glycolysis (Smith et al., 2018). In an Ames assay in S. typhimurium strains TA1535, TA1537, and TA1538 and Saccharomyces cerevisiae (strain D4), sodium gluconate did not increase the frequency of revertant colonies either in the absence or presence of S9 metabolic activation (Brusick, 1975). Sodium gluconate tested negative for genotoxicity in both single dose and repeated oral administration (4 days) chromosomal aberration assays in mouse bone marrow cells (Yamashita, 1974). In an Ames assay in S. typhimurium strains TA97, TA98, TA100, and TA104 the structurally related substance, malic acid (FEMA 2655), did not increase the frequency of revertant colonies in either the absence or presence of S9 metabolic activation. Based on the results for the substance and the structurally related substance, and also based on the structure of the substance and the identity and arrangement of functional groups therein, the Panel did not identify a specific concern for the genotoxic potential of sodium gluconate. A 28-day gavage study of sodium gluconate provided in the feed of male and female beagle dogs (4/sex/group) resulted in a NOAEL of 500 mg/kg bw/day (Okamoto, 1995). In a 28-day dietary study, Crj:CD(SD) Sprague-Dawley SPF rats were administered concentrations equal to 0, 1.25, 2.5, or 5% w/w sodium gluconate, or 0, 1000, 2000, and 4100 mg/kg bw/day (Mochizuki, 1997). The authors concluded that the NOEL was 4100 mg/kg bw per day. In a repeat dose 28-day toxicity study, male and female Crj:CD (SD) rats (12/sex/group) were administered sodium gluconate by gavage at doses of 500, 1000 and 2000 mg/kg bw/day (Mochizuki, 1995). No toxicologically significant changes were observed at any dose level. Subsequent histopathological examinations revealed a thickening of the stomach lining in male rats at the highest dose level. The Panel agreed with the author’s conclusion that this was not of toxicological concern to humans. The NOAEL was concluded by the Panel to be the top dose of 4100 mg/kg bw/day for both male and female rats, which is greater than 229,000 times the daily per capita intake of sodium gluconate from use as a flavor ingredient.

The Panel reviewed the GRAS application and supporting information regarding 3-methylbutane-1,3-dithiol (CAS 98139-71-0) and concluded that it is GRAS (FEMA 4935) (Smith et al., 2005a) for use as a flavor in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of simple aliphatic and aromatic sulfides and thiols (JECFA, 2000, 2004, 2008, 2011; SLR, D1). The Panel calculated the anticipated per capita intake (“eaters only”) of 3-methylbutane-1,3-dithiol from use as a flavor ingredient to be 0.01 µg/person/day, which is below the threshold of toxicological concern for structural class III (90 µg/person/day) (Munro et al., 1996). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. 3-Methylbutane-1,3-dithiol is expected to be methylated and undergo enzymatic oxidation to yield the corresponding sulfone or sulfone, followed by excretion. Alternatively, the thiols may react with glutathione to form mixed disulfides that can then undergo reduction and oxidative desulfuration, or oxidation to sulfonic acid via the thiosulfinate and sulfinic acid intermediates (Smith et al., 2018). Negative results were obtained in Ames assays for 3-methylbutane-1,3-dithiol in S. typhimurium TA98 and TA100 with and without metabolic activation (Komai, 2018d). In an Ames assay of structurally related substance, 1,2-ethanediethiol (FEMA 3484), conducted in S. typhimurium strains TA98, TA100, TA1535 and TA1537, no increase in the frequency of revertant colonies was observed in the presence and absence of S9 metabolic activation at up to 5000 µg/plate using the plate incorporation method (PhillipsPetroleumCompany, 1990). In the mouse lymphoma forward mutation assay conducted in L5178Y TK +/− mouse lymphoma cells, the same structurally related substance was concluded by the study author to be mutagenic due to an increase in the induction of forward mutations in the absence of S9. No increase in forward mutations was observed in the
The Panel reviewed the GRAS application and supporting information regarding rebaudioside I 95% (CAS 1220616-34-1) and concluded that it is GRAS (FEMA 4937) (Smith et al., 2005a) for use as a flavor in the food categories and at the use levels specified in the GRAS application (see Table 2). This material was evaluated within the context of the procedure for the FEMA GRAS evaluation of flavor ingredients produced through biotechnology processes (Cohen et al., 2015). The Panel calculated the anticipated per capita intake ("eaters only") of rebaudioside I 95% from use as a flavor ingredient to be 83 μg/person/day, which is below the threshold of toxicological concern for structural class III (90 μg/person/day) (Munro et al., 1996). This substance is reported to occur in Stevia rebaudiana leaves (Prakash et al., 2014). The Panel considered the identity description of the material to be adequate for FEMA GRAS evaluation. The Panel evaluated sensory data included within the application and found it satisfactory with regard to intended conditions of use for the flavoring ingredient (Harman and Hallagan, 2013). Metabolic data exist for representative members of each congeneric group that would predict, at the intake levels proposed, metabolism by well-established detoxication pathways to innocuous products (Garlanda et al., 2003; Geuns et al., 2003a; Geuns et al., 2003b; Koyama et al., 2003a; Koyama et al., 2003b; Nikiforov et al., 2013; Purkayastha et al., 2015; Purkayastha et al., 2016; Purkayastha et al., 2014; Renwick and Tarka, 2008). The genotoxicity of the major marker constituents (steviol glycosides) has been thoroughly examined in a wide range of studies. While some positive results are reported in in vitro mutagenicity assays, in vivo studies do not provide evidence of genotoxic effects (Nakajima, 2000b; Pezzuto et al., 1985; Pezzuto et al., 1986; Rumelhard et al., 2016; Sutton et al., 1993; Terai et al., 2002; Toyoda et al., 1997; Williams and Burdock, 2009). Based on the results for the various steviol glycosides, the Panel did not identify specific concerns related to the potential genotoxicity of stevia extract stevioside, 70%. In a 108-week carcinogenicity study for stevioside, no carcinogenic effects were observed (Toyoda et al., 1997). In a 2-year feeding study, male and female rats were administered the equivalent of 0, 50, 150, or 550 mg/kg bw/day of a stevia extract comprised of 74% stevioside and 16% rebaudioside A. The authors considered the NOAEL from this 2-year rat feeding study of a stevia extract to be equal to 550 mg/kg bw/day, or approximately 89.5 mg/kg bw/day of rebaudioside A (Yamada et al., 1985). This is greater than 64,000 times the anticipated daily per capita intake of rebaudioside E ≥85% from use as a flavoring ingredient.

The Panel reviewed the GRAS application and supporting information regarding rebaudioside E ≥85% (CAS 63279-14-1) and concluded that it is GRAS (FEMA 4936) (Smith et al., 2005a) for use as a flavor in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated within the context of the procedure for the safety evaluation of natural flavor complexes (Cohen et al., 2018; Smith et al., 2005b). This material was evaluated within the context of the procedure for the FEMA GRAS evaluation of flavor ingredients produced through biotechnology processes (Cohen et al., 2015). The Panel did not identify a concern for the genotoxic potential of 3-methylbutane-1,3-dithiol. No hematological, biochemical and urinary adverse effects were observed when a mean daily intake of 0.703 mg/kg bw/day of the structurally related substance, 2,3-butanedinitrol (FEMA 3477), was provided in the diet to male and female Sprague-Dawley rats for 90 days (Cox et al., 1974a). The NOAEL of 0.703 mg/kg bw/day established for the structurally related substance (Cox et al., 1974a) is 4,200,000 times the anticipated daily per capita intake of 3-methylbutane-1,3-dithiol from use as a flavoring ingredient.
et al., 1985). This is greater than 64,000 times the anticipated daily per capita intake of rebaudioside E ≥85% from use as a flavoring ingredient.

The Panel reviewed the GRAS application and supporting information regarding S-methyl 5-(1-ethoxyethoxy)decanethioate CAS 2180135-09-3) and concluded that it is GRAS (FEMA 4938) (Smith et al., 2005a) for use as a flavor in the food categories and at the use levels specified in the GRAS application (see Table 2). This substance was evaluated individually within the context of the chemical group of simple aliphatic and aromatic sulfides and thiols (JECA, 2000, 2004, 2008, 2011; SLR, D1). The Panel calculated the anticipated per capita intake (“eaters only”) of S-methyl 5-(1-ethoxyethoxy)tetradecanethioate from use as a flavor ingredient to be 3 µg/person/day, which is below the threshold of toxicological concern for structural class I (1800 µg/person/day) (Munro et al., 1996). The Panel considered the specification of the material to be adequately characterized by the purity assay and supporting spectral data provided for FEMA GRAS evaluation. S-methyl 5-(1-ethoxyethoxy)tetradecanethioate is expected to undergo hydrolysis of the acetal or thiostere to yield ethanol, acetaldehyde, an aliphatic 5-hydroxycarboxylic acid and methanethiol. Hydrolysis of the acetal group may result in ethanol, acetaldehyde and 5-hydroxy methyl thiostere and hydrolysis of the thiostere group may result in acetal carboxylic acid and methanethiol. Hydroxycarboxylic acid and their ester and acetal derivatives are readily hydrolyzed, absorbed and fully metabolized through the fatty acid β-oxidation pathway followed by excretion. Methanethiol is expected to undergo methylation and enzymatic oxidation to yield the corresponding sulfone by sulfone, followed by excretion. Methanethiol may also react with glutathione to form mixed disulfides that can undergo reduction and oxidative desulfuration, or oxidation to sulfonic acid via thiosulfinate and sulfinic acid intermediates. Additionally, methanethiol may be enzymatically oxidized to yield the corresponding sulfenic acid, sulfonic acid and ultimately, sulfonic acid. Sulfinic and sulfonic acids are water soluble and readily excreted (Bosron and Ting-Kai, 1980; Morgareidge, 1962; Williams, 1959). S-Methyl 5-(1-ethoxyethoxy) decanethioate tested negative for mutagenicity in an Ames assay conducted in S. typhimurium TA98 and TA100 in the presence and absence of S9 metabolic activation at concentrations up to 5000 µg/plate using the pre-incubation method (Komiay, 2018). Based on these results as well as on the structure of the substance and the identity and arrangement of functional groups therein, the Panel did not identify a concern for the genotoxic potential of S-methyl 5-(1-ethoxyethoxy)tetradecanethioate.

The Panel reviewed the GRAS application and supporting information regarding 5-β-bisabolene ≥88% (CAS 495-61-4) and concluded that it is GRAS (FEMA 4940) (Smith et al., 2005a) for use as a flavor in the food categories and at the use levels specified in the GRAS application (see Table 2). This material was evaluated within the context of the procedure for the safety evaluation of natural flavor complexes (Cohen et al., 2018; Smith et al., 2005). This material was evaluated within the context of the procedure for the FEMA GRAS evaluation of flavor ingredients produced through biotechnology processes (Cohen et al., 2015). The Panel calculated the anticipated per capita intake (“eaters only”) of β-bisabolene ≥88% from use as a flavor ingredient to be 277 µg/person/day, which is below the threshold of toxicological concern for structural class I (1800 µg/person/day) (Munro et al., 1996.). The Panel considered the identity description of the material to be adequate for FEMA GRAS evaluation. The major marker constituent, β-bisabolene, is expected to undergo oxidative metabolism in a manner similar to limonene, either by side chain oxidation or epoxidation of the alkene groups. Alternatively, alkene groups could undergo epoxidation followed by hydrolysis and formation of glucuronic acid or sulfate conjugates, leading to rapid elimination in the urine (Smith et al., 2018). The structurally-related substance, d-limonene (FEMA 2633), gave no evidence of mutagenicity in an Ames assay in S. typhimurium strains TA98, TA100, TA102, TA1535, TA1537, TA1538, UTH8413, and UTH8414 either in the presence or absence of S9 metabolic activation (Connor et al., 1985; Florin et al., 1980b; Haworth et al., 1983; Heck et al., 1989; Müller et al., 1993). d-Limonene was also negative in a chromosomal aberration study in Chinese hamster ovary...
(CHO) cells at up to 500 µg/ml and a mouse lymphoma forward mutation assay in LS174T cells up to a maximum concentration of 100 µg/ml, either in the presence or absence of S9 metabolic activation (Andersen et al., 1990; Heck et al., 1989; Myhr et al., 1990). In an OECD 471 compliant Ames assay using *Salmonella typhimurium* strains TA98, TA100, TA102, TA1535, and TA1537, the structurally related substance, bisabolene (a mixture of isomers) (FEMA 3331), did not increase the frequency of revertant colonies in either the absence or presence of S9 metabolic activation using both the plate incorporation and pre-incubation methodology (OECD, 1997; Poth, 2002). Based on these results as well as on the structure of the substance and the identity and arrangement of functional groups therein, the Panel did not identify a specific concern for the genotoxic potential of β-bisabolene ≥88%. A 90-day gavage study of *d*-limonene (FEMA 2633) in male and female F344/N rats (10/sex/dose) resulted in a NOAEL of 215 mg/kg bw/day for female rats (NTP, 1990) which is 46,000 times the anticipated daily *per capita* intake of β-bisabolene ≥88% from use as a flavoring ingredient.

The Panel reviewed the GRAS application and supporting information regarding nootkatone complex (CAS 4674-50-4) and concluded that it is GRAS (FEMA 4941) (Smith et al., 2005a) for use as a flavor in the food categories and at the use levels specified in the GRAS application (see Table 2). This material was evaluated within the context of the procedure for the safety evaluation of natural flavor complexes (Cohen et al., 2018; Smith et al., 2005). The Panel calculated the anticipated *per capita* intake of nootkatone complex from use as a flavoring ingredient.

The Panel did not identify a specific concern for the genotoxic potential of nootkatone complex. A 28-day gavage study of major marker substance, nootkatone (FEMA 3166), in male and female Sprague-Dawley Crl:CD (SD) IGS BR rats resulted in observations of α2u-globulin nephropathy, an effect determined to be specific to male rats and therefore not relevant to human exposure. A NOAEL of 10 mg/kg bw/day was determined (Jones et al., 2004). This is greater than 8600 times the anticipated daily *per capita* intake of nootkatone complex from use as a flavoring ingredient.

The Panel reviewed the GRAS application and supporting information regarding modified guaiac wood extract (CAS 2247239-04-7) and concluded that it is GRAS (FEMA 4942) (Smith et al., 2005a) for use as a flavor in the food categories and at the use levels specified in the GRAS application (see Table 2). This material was evaluated within the context of the procedure for the safety evaluation of natural flavor complexes (Cohen et al., 2018; Smith et al., 2005). The Panel calculated the anticipated *per capita* intake ("eaters only") of modified guaiac wood extract from use as a flavor ingredient to be 1 µg/person/day, which is below the threshold of toxicological concern for structural class III (90 µg/person/day) (Munro et al., 1996). The Panel considered the identity description of the material to be adequate for FEMA GRAS evaluation. Metabolic data of representative members of the principal congenic groups, as well as anticipated levels of intake of this substance, indicate that constituents in these congenic groups would be metabolized to innocuous products based on well-established metabolic pathways (Smith et al., 2018). In an OECD 471 compliant Ames assay of modified guaiac wood extract conducted in *Salmonella typhimurium* strains TA98, TA100, TA1535, and TA1537 as well as *E. coli* strain WP2uvrA, no evidence of mutagenicity was observed in the presence and absence of S9 metabolic activation at doses up to 3160 µg/plate using both the plate incorporation and pre-incubation methodologies (Spruth, 2017). No induction of micronuclei relative to controls was observed in an *in vitro* micronucleus study for modified guaiac wood extract when incubated in human lymphocytes for 4 hours in the presence and absence of S9 at doses up to 156 µg/ml or for 24 hours in the absence of S9 at doses up to 114 µg/ml (Naumann, 2018). An Ames assay for triethyl citrate (FEMA 3083), a major marker constituent of modified guaiac wood extract, yielded negative results in the presence and absence of S9 at doses up to 5000 µg/plate (Bhalli, 2015a). No genotoxicity was observed in an *in vitro* micronucleus assay for triethyl citrate (FEMA 3083) incubated in human peripheral blood lymphocytes (Bhalli, 2015b). Based on these results as well as on the identity of the major marker constituents and the identity and arrangement of functional groups therein, the Panel did not identify a specific concern for the genotoxic potential of modified guaiac wood extract.
References

Api, A.M., Ritacco, G., Sipes, I.G., 2013. Disposition and excretion of 14C-AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydropyran) and 14C-hhcb (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta-gamma-2-benzopyran) after intravenous administration to Sprague-Dawley rats and domestic pigs. International journal of toxicology 32, 288-295.

Api, A.M., San, R.H.C., 1999. Genotoxicity tests with 6-acetyl-1,1,2,4,4,7-hexamethytltetraline and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta-y-2-benzopyran. Mutation research 446, 67-81.

Corporation, Rockville, MD, USA. Unpublished report provided to the FEMA Expert Panel.

Daly, J., 2016. FEMA 4899: A 28-day dietary administration toxicity study in rats. MPI Research, Mattawan, Michigan, USA. Unpublished report to the FEMA Expert Panel.

Daly, J., 2017. FEMA 4899: A 13-week dietary administration toxicity study in rats. Unpublished report provided to the FEMA Expert Panel., MPI Research, Mattawan, Michigan, USA.

JECFA, 2009. Safety evaluation of certain food additives and contaminants (sixty-ninth meeting of Committee on Food Additives WHO Food Additive Series No. 52.

JECFA, 2017. Safety evaluation of certain food additives. WHO Food Additive Series No. 73.

Jin, X., Dong, H., 2010. Acute toxicity and mutagenicity of extract from *Eriobotra japonica*, 4th International Conference on Bioinformatics and Biomedical Engineering. Unpublished report provided to the FEMA Expert Panel

Jin, X., Dong, H., 2017. Acute toxicity and mutagenicity of extract from *Eriobotra japonica* Huainan Union University, Huainan, China. Unpublished report provided to the FEMA Expert Panel

Liwska, K., 2012. 10-Undecenyl ninety day repeated dose oral (dietary) toxicity study in the rat., Harlan Laboratories Ltd., Derbyshire, UK. Unpublished report to the FEMA Expert Panel provided by the Research Institute for Fragrance Materials.

Marzin, D., 1979a. Rhône-Poulenc unpublished / DREBS (Department Recherche et Essais Biologiques Stallergènes) study R-905017. Citation: Euclid Data Sheet for Vanillin by Rhône-Poulenc Chimie, created 26.01.95, updated 01.06.95). Repeated dose oral toxicity (13 weeks) of 4-hydroxy-3-methoxy-benzaldehyde (vanillin) to Sprague Dawley rats. Toxicology Letters 144, s57. As cited in the OECD SIDS.

Marzin, D., 1979b. Rhône-Poulenc unpublished / DREBS (Department Recherche et Essais Biologiques Stallergènes) study R-905017. Citation: Euclid Data Sheet for Vanillin by Rhône-Poulenc Chimie, created 26.01.95, updated 01.06.95). As cited in the OECD SIDS.

National Toxicology Program (NTP), 1990. Carcinogenicity and toxicology studies of d-limonene in F344/N Rats and B6C3F1. US Department of Health and Human Services.

National Toxicology Program (NTP), 2003. Toxicology and carcinogenesis studies of citral (microencapsulated) in F344/N rats and B6C3F1 mice. U.S. Department of Health and Human Services, National Institutes of Heath.

National Toxicology Program (NTP), 1992. Toxicology and Carcinogenesis Studies of y-butyrolactone (CAS no. 96-48-0) in F344/N Rats and B6C3F1 Mice (Gavage Studies). National Toxicology Program Technical Report Series.

Pool, B.L., Lin, P.Z., 1982. Mutagenicity testing in the Salmonella typhimurium assay of phenolic compounds and phenolic fractions obtained from smokehouse smoke condensates. Food and Chemical Toxicology. 20, 383-391.

rebaudioside A. Regulatory toxicology and pharmacology: RTP 68, 259-268.

Williams, R.T., 1959. Detoxication mechanisms. The metabolism and detoxication of drugs, toxic substances, and other organic compounds, 2nd ed.

